Upload folder using huggingface_hub
Browse files- .gitattributes +2 -32
- README.md +212 -0
- added_tokens.json +11 -0
- config.json +202 -0
- configuration_skywork_chat.py +92 -0
- configuration_skywork_lm2.py +139 -0
- configuration_skywork_vit.py +101 -0
- conversation.py +163 -0
- generation_config.json +9 -0
- inputs_stats.pth +3 -0
- modeling_skywork_chat.py +356 -0
- modeling_skywork_lm2.py +1403 -0
- modeling_skywork_vit.py +424 -0
- outputs_stats.pth +3 -0
- preprocessor_config.json +19 -0
- pytorch_model-00001-of-00016.bin +3 -0
- pytorch_model-00002-of-00016.bin +3 -0
- pytorch_model-00003-of-00016.bin +3 -0
- pytorch_model-00004-of-00016.bin +3 -0
- pytorch_model-00005-of-00016.bin +3 -0
- pytorch_model-00006-of-00016.bin +3 -0
- pytorch_model-00007-of-00016.bin +3 -0
- pytorch_model-00008-of-00016.bin +3 -0
- pytorch_model-00009-of-00016.bin +3 -0
- pytorch_model-00010-of-00016.bin +3 -0
- pytorch_model-00011-of-00016.bin +3 -0
- pytorch_model-00012-of-00016.bin +3 -0
- pytorch_model-00013-of-00016.bin +3 -0
- pytorch_model-00014-of-00016.bin +3 -0
- pytorch_model-00015-of-00016.bin +3 -0
- pytorch_model-00016-of-00016.bin +3 -0
- pytorch_model.bin.index.json +0 -0
- special_tokens_map.json +47 -0
- tokenizer.json +3 -0
- tokenizer_config.json +330 -0
- zero_to_fp32.py +604 -0
.gitattributes
CHANGED
@@ -1,35 +1,5 @@
|
|
1 |
-
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
-
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
-
*.
|
5 |
-
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
-
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
-
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
-
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
-
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
-
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
-
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
-
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
-
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
-
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
-
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
-
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
-
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
-
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
-
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
-
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
-
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
-
|
25 |
-
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
-
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
-
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
-
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
-
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
-
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
-
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
-
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
-
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
-
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
-
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
1 |
*.bin filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
*.pt filter=lfs diff=lfs merge=lfs -text
|
4 |
*.pth filter=lfs diff=lfs merge=lfs -text
|
5 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
README.md
ADDED
@@ -0,0 +1,212 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Skywork-R1V-38B-AWQ
|
2 |
+
|
3 |
+
This is the AWQ quantized version of [Skywork-R1V-38B](https://huggingface.co/Skywork/Skywork-R1V-38B), offering improved inference efficiency while maintaining model quality.
|
4 |
+
|
5 |
+
## Model Description
|
6 |
+
|
7 |
+
Skywork R1V is a pioneering multimodal model with advanced reasoning capabilities through Chain-of-Thought. This quantized version maintains the core strengths of the original model while reducing computational requirements.
|
8 |
+
|
9 |
+
For detailed information about the model architecture and capabilities, please refer to the [original Skywork-R1V repository](https://github.com/SkyworkAI/Skywork-R1V) and [technical report](https://github.com/SkyworkAI/Skywork-R1V/blob/main/Skywork_R1V.pdf).
|
10 |
+
|
11 |
+
## Benchmark Results
|
12 |
+
|
13 |
+
The AWQ quantized model maintains strong performance across key benchmarks:
|
14 |
+
|
15 |
+
| Benchmark | Score |
|
16 |
+
|-----------|-------|
|
17 |
+
| MMMU | 0.6 |
|
18 |
+
| MathV | 0.59 |
|
19 |
+
| AIME_2024 | 0.6 |
|
20 |
+
|
21 |
+
These results demonstrate that the quantized model preserves the mathematical and multimodal reasoning capabilities of the original model.
|
22 |
+
|
23 |
+
## Usage
|
24 |
+
|
25 |
+
You can use the quantized model with different inference frameworks:
|
26 |
+
|
27 |
+
### Using VLLM
|
28 |
+
|
29 |
+
#### Python API
|
30 |
+
|
31 |
+
```python
|
32 |
+
import os
|
33 |
+
from vllm import LLM, SamplingParams
|
34 |
+
from vllm.entrypoints.chat_utils import load_chat_template
|
35 |
+
|
36 |
+
model_name = "Skywork/Skywork-R1V-38B-AWQ" # or local path
|
37 |
+
llm = LLM(model_name,
|
38 |
+
dtype='float16',
|
39 |
+
quantization="awq",
|
40 |
+
gpu_memory_utilization=0.85,
|
41 |
+
max_model_len=4096,
|
42 |
+
trust_remote_code=True,
|
43 |
+
)
|
44 |
+
|
45 |
+
# Add your inference code here
|
46 |
+
```
|
47 |
+
|
48 |
+
#### OpenAI-compatible API Server
|
49 |
+
|
50 |
+
```bash
|
51 |
+
MODEL_ID="Skywork/Skywork-R1V-38B-AWQ" # or local path
|
52 |
+
|
53 |
+
|
54 |
+
CUDA_VISIBLE_DEVICES=0 \
|
55 |
+
python -m vllm.entrypoints.openai.api_server \
|
56 |
+
--model $MODEL_ID \
|
57 |
+
--dtype float16 \
|
58 |
+
--quantization awq \
|
59 |
+
--port 23334 \
|
60 |
+
--max-model-len 12000 \
|
61 |
+
--gpu-memory-utilization 0.9 \
|
62 |
+
--trust-remote-code
|
63 |
+
```
|
64 |
+
|
65 |
+
### Using LMDeploy
|
66 |
+
|
67 |
+
```python
|
68 |
+
import os
|
69 |
+
from lmdeploy import pipeline, TurbomindEngineConfig, ChatTemplateConfig
|
70 |
+
from lmdeploy.vl import load_image
|
71 |
+
|
72 |
+
model_path = "Skywork/Skywork-R1V-38B-AWQ" # or local path
|
73 |
+
|
74 |
+
engine_config = TurbomindEngineConfig(cache_max_entry_count=0.75)
|
75 |
+
chat_template_config = ChatTemplateConfig(model_name=model_path)
|
76 |
+
pipe = pipeline(model_path,
|
77 |
+
backend_config=engine_config,
|
78 |
+
chat_template_config=chat_template_config,
|
79 |
+
)
|
80 |
+
|
81 |
+
# Example: Multimodal inference
|
82 |
+
image = load_image('table.jpg')
|
83 |
+
response = pipe(('Describe this image?', image))
|
84 |
+
print(response.text)
|
85 |
+
```
|
86 |
+
|
87 |
+
## Hardware Requirements
|
88 |
+
|
89 |
+
The AWQ quantization reduces the memory footprint compared to the original FP16 model. We recommend:
|
90 |
+
|
91 |
+
- At least one GPU with 30GB+ VRAM for inference
|
92 |
+
- For optimal performance with longer contexts, 40GB+ VRAM is recommended
|
93 |
+
|
94 |
+
## Citation
|
95 |
+
|
96 |
+
If you use this model in your research, please cite:
|
97 |
+
|
98 |
+
```bibtex
|
99 |
+
@article{skywork2025r1v,
|
100 |
+
title = {Skywork R1V: Pioneering Multimodal Reasoning with Chain-of-Thought},
|
101 |
+
author = {Yi Peng, Chris, Xiaokun Wang, Yichen Wei, Jiangbo Pei, Weijie Qiu, Ai Jian, Yunzhuo Hao, Jiachun Pan, Tianyidan Xie, Li Ge, Rongxian Zhuang, Xuchen Song, Yang Liu, Yahui Zhou},
|
102 |
+
year = {2025},
|
103 |
+
journal = {https://github.com/SkyworkAI/Skywork-R1V/blob/main/report/Skywork_R1V.pdf},
|
104 |
+
url = {https://huggingface.co/Skywork/Skywork-R1V-38B}
|
105 |
+
}
|
106 |
+
```
|
107 |
+
|
108 |
+
# Skywork-R1V-38B-AWQ (中文说明)
|
109 |
+
|
110 |
+
这是 [Skywork-R1V-38B](https://huggingface.co/Skywork/Skywork-R1V-38B) 的 AWQ 量化版本,提供了更高效的推理性能,同时保持模型质量。
|
111 |
+
|
112 |
+
## 模型描述
|
113 |
+
|
114 |
+
Skywork R1V 是一个开创性的多模态模型,通过思维链(Chain-of-Thought)技术具备出色的推理能力。这个量化版本保持了原始模型的核心优势,同时降低了计算需求。
|
115 |
+
|
116 |
+
有关模型架构和能力的详细信息,请参阅[原始 Skywork-R1V 代码库](https://github.com/SkyworkAI/Skywork-R1V)和[技术报告](https://github.com/SkyworkAI/Skywork-R1V/blob/main/Skywork_R1V.pdf)。
|
117 |
+
|
118 |
+
## 基准测试结果
|
119 |
+
|
120 |
+
AWQ 量化模型在关键基准测试中保持了强劲的性能:
|
121 |
+
|
122 |
+
| 基准测试 | 分数 |
|
123 |
+
|-----------|-------|
|
124 |
+
| MMMU | 0.6 |
|
125 |
+
| MathV | 0.59 |
|
126 |
+
| AIME_2024 | 0.6 |
|
127 |
+
|
128 |
+
这些结果表明,量化模型保留了原始模型的数学和多模态推理能力。
|
129 |
+
|
130 |
+
## 使用方法
|
131 |
+
|
132 |
+
您可以使用不同的推理框架来使用这个量化模型:
|
133 |
+
|
134 |
+
### 使用 VLLM
|
135 |
+
|
136 |
+
#### Python API
|
137 |
+
|
138 |
+
```python
|
139 |
+
import os
|
140 |
+
from vllm import LLM, SamplingParams
|
141 |
+
from vllm.entrypoints.chat_utils import load_chat_template
|
142 |
+
|
143 |
+
model_name = "Skywork/Skywork-R1V-38B-AWQ" # 或本地路径
|
144 |
+
llm = LLM(model_name,
|
145 |
+
dtype='float16',
|
146 |
+
quantization="awq",
|
147 |
+
gpu_memory_utilization=0.85,
|
148 |
+
max_model_len=4096,
|
149 |
+
trust_remote_code=True,
|
150 |
+
)
|
151 |
+
|
152 |
+
# 在此添加您的推理代码
|
153 |
+
```
|
154 |
+
|
155 |
+
#### OpenAI 兼容的 API 服务器
|
156 |
+
|
157 |
+
```bash
|
158 |
+
MODEL_ID="Skywork/Skywork-R1V-38B-AWQ" # 或本地路径
|
159 |
+
|
160 |
+
CUDA_VISIBLE_DEVICES=0 \
|
161 |
+
python -m vllm.entrypoints.openai.api_server \
|
162 |
+
--model $MODEL_ID \
|
163 |
+
--dtype float16 \
|
164 |
+
--quantization awq \
|
165 |
+
--port 23334 \
|
166 |
+
--max-model-len 12000 \
|
167 |
+
--gpu-memory-utilization 0.9 \
|
168 |
+
--trust-remote-code
|
169 |
+
```
|
170 |
+
|
171 |
+
### 使用 LMDeploy
|
172 |
+
|
173 |
+
```python
|
174 |
+
import os
|
175 |
+
from lmdeploy import pipeline, TurbomindEngineConfig, ChatTemplateConfig
|
176 |
+
from lmdeploy.vl import load_image
|
177 |
+
|
178 |
+
model_path = "Skywork/Skywork-R1V-38B-AWQ" # 或本地路径
|
179 |
+
|
180 |
+
engine_config = TurbomindEngineConfig(cache_max_entry_count=0.75)
|
181 |
+
chat_template_config = ChatTemplateConfig(model_name=model_path)
|
182 |
+
pipe = pipeline(model_path,
|
183 |
+
backend_config=engine_config,
|
184 |
+
chat_template_config=chat_template_config,
|
185 |
+
)
|
186 |
+
|
187 |
+
# 示例:多模态推理
|
188 |
+
image = load_image('table.jpg')
|
189 |
+
response = pipe(('描述这个图片?', image))
|
190 |
+
print(response.text)
|
191 |
+
```
|
192 |
+
|
193 |
+
## 硬件要求
|
194 |
+
|
195 |
+
与原始 FP16 模型相比,AWQ 量化减少了内存占用。我们建议:
|
196 |
+
|
197 |
+
- 至少一块 30GB+ 显存的 GPU 用于推理
|
198 |
+
- 对于更长上下文的最佳性能,建议使用 40GB+ 显存
|
199 |
+
|
200 |
+
## 引用
|
201 |
+
|
202 |
+
如果您在研究中使用此模型,请引用:
|
203 |
+
|
204 |
+
```bibtex
|
205 |
+
@article{skywork2025r1v,
|
206 |
+
title = {Skywork R1V: Pioneering Multimodal Reasoning with Chain-of-Thought},
|
207 |
+
author = {Yi Peng, Chris, Xiaokun Wang, Yichen Wei, Jiangbo Pei, Weijie Qiu, Ai Jian, Yunzhuo Hao, Jiachun Pan, Tianyidan Xie, Li Ge, Rongxian Zhuang, Xuchen Song, Yang Liu, Yahui Zhou},
|
208 |
+
year = {2025},
|
209 |
+
journal = {https://github.com/SkyworkAI/Skywork-R1V/blob/main/report/Skywork_R1V.pdf},
|
210 |
+
url = {https://huggingface.co/Skywork/Skywork-R1V-38B}
|
211 |
+
}
|
212 |
+
```
|
added_tokens.json
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</box>": 92552,
|
3 |
+
"</img>": 92545,
|
4 |
+
"</quad>": 92548,
|
5 |
+
"</ref>": 92550,
|
6 |
+
"<IMG_CONTEXT>": 92546,
|
7 |
+
"<box>": 92551,
|
8 |
+
"<img>": 92544,
|
9 |
+
"<quad>": 92547,
|
10 |
+
"<ref>": 92549
|
11 |
+
}
|
config.json
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_commit_hash": null,
|
3 |
+
"_name_or_path": "",
|
4 |
+
"architectures":["InternVLChatModel"],
|
5 |
+
"auto_map": {
|
6 |
+
"AutoConfig": "configuration_skywork_chat.SkyworkChatConfig",
|
7 |
+
"AutoModel": "modeling_skywork_chat.SkyworkChatModel",
|
8 |
+
"AutoModelForCausalLM": "modeling_skywork_chat.SkyworkChatModel"
|
9 |
+
},
|
10 |
+
"downsample_ratio": 0.5,
|
11 |
+
"dynamic_image_size": true,
|
12 |
+
"force_image_size": 448,
|
13 |
+
"hidden_size": 5120,
|
14 |
+
"llm_config": {
|
15 |
+
"_attn_implementation_autoset": true,
|
16 |
+
"_name_or_path": "",
|
17 |
+
"add_cross_attention": false,
|
18 |
+
"architectures": [
|
19 |
+
"Qwen2ForCausalLM"
|
20 |
+
],
|
21 |
+
"attention_dropout": 0.0,
|
22 |
+
"attn_implementation": "eager",
|
23 |
+
"bad_words_ids": null,
|
24 |
+
"begin_suppress_tokens": null,
|
25 |
+
"bos_token_id": 151643,
|
26 |
+
"chunk_size_feed_forward": 0,
|
27 |
+
"cross_attention_hidden_size": null,
|
28 |
+
"decoder_start_token_id": null,
|
29 |
+
"diversity_penalty": 0.0,
|
30 |
+
"do_sample": false,
|
31 |
+
"early_stopping": false,
|
32 |
+
"encoder_no_repeat_ngram_size": 0,
|
33 |
+
"eos_token_id": 151643,
|
34 |
+
"exponential_decay_length_penalty": null,
|
35 |
+
"finetuning_task": null,
|
36 |
+
"forced_bos_token_id": null,
|
37 |
+
"forced_eos_token_id": null,
|
38 |
+
"hidden_act": "silu",
|
39 |
+
"hidden_size": 5120,
|
40 |
+
"id2label": {
|
41 |
+
"0": "LABEL_0",
|
42 |
+
"1": "LABEL_1"
|
43 |
+
},
|
44 |
+
"initializer_range": 0.02,
|
45 |
+
"intermediate_size": 27648,
|
46 |
+
"is_decoder": false,
|
47 |
+
"is_encoder_decoder": false,
|
48 |
+
"label2id": {
|
49 |
+
"LABEL_0": 0,
|
50 |
+
"LABEL_1": 1
|
51 |
+
},
|
52 |
+
"length_penalty": 1.0,
|
53 |
+
"max_length": 20,
|
54 |
+
"max_position_embeddings": 131072,
|
55 |
+
"max_window_layers": 64,
|
56 |
+
"min_length": 0,
|
57 |
+
"model_type": "qwen2",
|
58 |
+
"no_repeat_ngram_size": 0,
|
59 |
+
"num_attention_heads": 40,
|
60 |
+
"num_beam_groups": 1,
|
61 |
+
"num_beams": 1,
|
62 |
+
"num_hidden_layers": 64,
|
63 |
+
"num_key_value_heads": 8,
|
64 |
+
"num_return_sequences": 1,
|
65 |
+
"output_attentions": false,
|
66 |
+
"output_hidden_states": false,
|
67 |
+
"output_scores": false,
|
68 |
+
"pad_token_id": null,
|
69 |
+
"prefix": null,
|
70 |
+
"problem_type": null,
|
71 |
+
"pruned_heads": {},
|
72 |
+
"quantization_config": {
|
73 |
+
"bits": 4,
|
74 |
+
"group_size": 128,
|
75 |
+
"quant_method": "awq",
|
76 |
+
"version": "gemm",
|
77 |
+
"zero_point": true
|
78 |
+
},
|
79 |
+
"remove_invalid_values": false,
|
80 |
+
"repetition_penalty": 1.0,
|
81 |
+
"return_dict": true,
|
82 |
+
"return_dict_in_generate": false,
|
83 |
+
"rms_norm_eps": 1e-05,
|
84 |
+
"rope_scaling": null,
|
85 |
+
"rope_theta": 1000000.0,
|
86 |
+
"sep_token_id": null,
|
87 |
+
"sliding_window": null,
|
88 |
+
"suppress_tokens": null,
|
89 |
+
"task_specific_params": null,
|
90 |
+
"temperature": 1.0,
|
91 |
+
"tf_legacy_loss": false,
|
92 |
+
"tie_encoder_decoder": false,
|
93 |
+
"tie_word_embeddings": false,
|
94 |
+
"tokenizer_class": null,
|
95 |
+
"top_k": 50,
|
96 |
+
"top_p": 1.0,
|
97 |
+
"torch_dtype": "bfloat16",
|
98 |
+
"torchscript": false,
|
99 |
+
"transformers_version": "4.46.3",
|
100 |
+
"typical_p": 1.0,
|
101 |
+
"use_bfloat16": false,
|
102 |
+
"use_cache": false,
|
103 |
+
"use_sliding_window": false,
|
104 |
+
"vocab_size": 152064
|
105 |
+
},
|
106 |
+
"max_dynamic_patch": 6,
|
107 |
+
"min_dynamic_patch": 1,
|
108 |
+
"model_type": "internvl_chat",
|
109 |
+
"pad2square": false,
|
110 |
+
"ps_version": "v2",
|
111 |
+
"select_layer": -1,
|
112 |
+
"template": "skywork-r1v-chat",
|
113 |
+
"tie_word_embeddings": false,
|
114 |
+
"torch_dtype": "float16",
|
115 |
+
"transformers_version": null,
|
116 |
+
"use_backbone_lora": 0,
|
117 |
+
"use_llm_lora": 0,
|
118 |
+
"use_thumbnail": true,
|
119 |
+
"vision_config": {
|
120 |
+
"_attn_implementation_autoset": true,
|
121 |
+
"_name_or_path": "",
|
122 |
+
"add_cross_attention": false,
|
123 |
+
"architectures": null,
|
124 |
+
"attention_dropout": 0.0,
|
125 |
+
"bad_words_ids": null,
|
126 |
+
"begin_suppress_tokens": null,
|
127 |
+
"bos_token_id": null,
|
128 |
+
"chunk_size_feed_forward": 0,
|
129 |
+
"cross_attention_hidden_size": null,
|
130 |
+
"decoder_start_token_id": null,
|
131 |
+
"diversity_penalty": 0.0,
|
132 |
+
"do_sample": false,
|
133 |
+
"drop_path_rate": 0.0,
|
134 |
+
"dropout": 0.0,
|
135 |
+
"early_stopping": false,
|
136 |
+
"encoder_no_repeat_ngram_size": 0,
|
137 |
+
"eos_token_id": null,
|
138 |
+
"exponential_decay_length_penalty": null,
|
139 |
+
"finetuning_task": null,
|
140 |
+
"forced_bos_token_id": null,
|
141 |
+
"forced_eos_token_id": null,
|
142 |
+
"hidden_act": "gelu",
|
143 |
+
"hidden_size": 3200,
|
144 |
+
"id2label": {
|
145 |
+
"0": "LABEL_0",
|
146 |
+
"1": "LABEL_1"
|
147 |
+
},
|
148 |
+
"image_size": 448,
|
149 |
+
"initializer_factor": 0.1,
|
150 |
+
"initializer_range": 1e-10,
|
151 |
+
"intermediate_size": 12800,
|
152 |
+
"is_decoder": false,
|
153 |
+
"is_encoder_decoder": false,
|
154 |
+
"label2id": {
|
155 |
+
"LABEL_0": 0,
|
156 |
+
"LABEL_1": 1
|
157 |
+
},
|
158 |
+
"layer_norm_eps": 1e-06,
|
159 |
+
"length_penalty": 1.0,
|
160 |
+
"max_length": 20,
|
161 |
+
"min_length": 0,
|
162 |
+
"model_type": "",
|
163 |
+
"no_repeat_ngram_size": 0,
|
164 |
+
"norm_type": "rms_norm",
|
165 |
+
"num_attention_heads": 25,
|
166 |
+
"num_beam_groups": 1,
|
167 |
+
"num_beams": 1,
|
168 |
+
"num_channels": 3,
|
169 |
+
"num_hidden_layers": 45,
|
170 |
+
"num_return_sequences": 1,
|
171 |
+
"output_attentions": false,
|
172 |
+
"output_hidden_states": false,
|
173 |
+
"output_scores": false,
|
174 |
+
"pad_token_id": null,
|
175 |
+
"patch_size": 14,
|
176 |
+
"prefix": null,
|
177 |
+
"problem_type": null,
|
178 |
+
"pruned_heads": {},
|
179 |
+
"qk_normalization": true,
|
180 |
+
"qkv_bias": false,
|
181 |
+
"remove_invalid_values": false,
|
182 |
+
"repetition_penalty": 1.0,
|
183 |
+
"return_dict": true,
|
184 |
+
"return_dict_in_generate": false,
|
185 |
+
"sep_token_id": null,
|
186 |
+
"suppress_tokens": null,
|
187 |
+
"task_specific_params": null,
|
188 |
+
"temperature": 1.0,
|
189 |
+
"tf_legacy_loss": false,
|
190 |
+
"tie_encoder_decoder": false,
|
191 |
+
"tie_word_embeddings": true,
|
192 |
+
"tokenizer_class": null,
|
193 |
+
"top_k": 50,
|
194 |
+
"top_p": 1.0,
|
195 |
+
"torch_dtype": "bfloat16",
|
196 |
+
"torchscript": false,
|
197 |
+
"transformers_version": "4.46.3",
|
198 |
+
"typical_p": 1.0,
|
199 |
+
"use_bfloat16": true,
|
200 |
+
"use_flash_attn": false
|
201 |
+
}
|
202 |
+
}
|
configuration_skywork_chat.py
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
|
3 |
+
from transformers import AutoConfig, LlamaConfig
|
4 |
+
from transformers.configuration_utils import PretrainedConfig
|
5 |
+
from transformers.utils import logging
|
6 |
+
|
7 |
+
from .configuration_skywork_vit import SkyworkVisionConfig
|
8 |
+
from .configuration_skywork_lm2 import SkyworkLM2Config
|
9 |
+
from transformers import Qwen2Config, Qwen2ForCausalLM
|
10 |
+
|
11 |
+
logger = logging.get_logger(__name__)
|
12 |
+
|
13 |
+
|
14 |
+
class SkyworkChatConfig(PretrainedConfig):
|
15 |
+
model_type = 'skywork_chat' #
|
16 |
+
is_composition = True
|
17 |
+
|
18 |
+
def __init__(
|
19 |
+
self,
|
20 |
+
vision_config=None,
|
21 |
+
llm_config=None,
|
22 |
+
use_backbone_lora=0,
|
23 |
+
use_llm_lora=0,
|
24 |
+
select_layer=-1,
|
25 |
+
force_image_size=None,
|
26 |
+
downsample_ratio=0.5,
|
27 |
+
template=None,
|
28 |
+
dynamic_image_size=False,
|
29 |
+
use_thumbnail=False,
|
30 |
+
ps_version='v1',
|
31 |
+
min_dynamic_patch=1,
|
32 |
+
max_dynamic_patch=6,
|
33 |
+
**kwargs):
|
34 |
+
super().__init__(**kwargs)
|
35 |
+
if vision_config is None:
|
36 |
+
vision_config = {'architectures': ['SkyworkVisionModel']}
|
37 |
+
logger.info('vision_config is None. Initializing the SkyworkVisionConfig with default values.')
|
38 |
+
|
39 |
+
if llm_config is None:
|
40 |
+
llm_config = {'architectures': ['Qwen2ForCausalLM']}
|
41 |
+
logger.info('llm_config is None. Initializing the LlamaConfig config with default values (`LlamaConfig`).')
|
42 |
+
|
43 |
+
self.vision_config = SkyworkVisionConfig(**vision_config)
|
44 |
+
if llm_config.get('architectures')[0] == 'LlamaForCausalLM':
|
45 |
+
self.llm_config = LlamaConfig(**llm_config)
|
46 |
+
elif llm_config.get('architectures')[0] == 'Qwen2ForCausalLM':
|
47 |
+
self.llm_config = Qwen2Config(**llm_config)
|
48 |
+
else:
|
49 |
+
raise ValueError('Unsupported architecture: {}'.format(llm_config.get('architectures')[0]))
|
50 |
+
|
51 |
+
|
52 |
+
self.use_backbone_lora = use_backbone_lora
|
53 |
+
self.use_llm_lora = use_llm_lora
|
54 |
+
self.select_layer = select_layer
|
55 |
+
self.force_image_size = force_image_size
|
56 |
+
self.downsample_ratio = downsample_ratio
|
57 |
+
self.template = template
|
58 |
+
self.dynamic_image_size = dynamic_image_size
|
59 |
+
self.use_thumbnail = use_thumbnail
|
60 |
+
self.ps_version = ps_version # pixel shuffle version
|
61 |
+
self.min_dynamic_patch = min_dynamic_patch
|
62 |
+
self.max_dynamic_patch = max_dynamic_patch
|
63 |
+
|
64 |
+
logger.info(f'vision_select_layer: {self.select_layer}')
|
65 |
+
logger.info(f'ps_version: {self.ps_version}')
|
66 |
+
logger.info(f'min_dynamic_patch: {self.min_dynamic_patch}')
|
67 |
+
logger.info(f'max_dynamic_patch: {self.max_dynamic_patch}')
|
68 |
+
|
69 |
+
def to_dict(self):
|
70 |
+
"""
|
71 |
+
Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
|
72 |
+
|
73 |
+
Returns:
|
74 |
+
`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
|
75 |
+
"""
|
76 |
+
output = copy.deepcopy(self.__dict__)
|
77 |
+
output['vision_config'] = self.vision_config.to_dict()
|
78 |
+
output['llm_config'] = self.llm_config.to_dict()
|
79 |
+
output['model_type'] = self.__class__.model_type
|
80 |
+
output['use_backbone_lora'] = self.use_backbone_lora
|
81 |
+
output['use_llm_lora'] = self.use_llm_lora
|
82 |
+
output['select_layer'] = self.select_layer
|
83 |
+
output['force_image_size'] = self.force_image_size
|
84 |
+
output['downsample_ratio'] = self.downsample_ratio
|
85 |
+
output['template'] = self.template
|
86 |
+
output['dynamic_image_size'] = self.dynamic_image_size
|
87 |
+
output['use_thumbnail'] = self.use_thumbnail
|
88 |
+
output['ps_version'] = self.ps_version
|
89 |
+
output['min_dynamic_patch'] = self.min_dynamic_patch
|
90 |
+
output['max_dynamic_patch'] = self.max_dynamic_patch
|
91 |
+
|
92 |
+
return output
|
configuration_skywork_lm2.py
ADDED
@@ -0,0 +1,139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) The Skywork team and The HuggingFace Inc. team. All rights reserved.
|
2 |
+
#
|
3 |
+
# This code is based on transformers/src/transformers/models/llama/configuration_llama.py
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
""" SkyworkLM2 model configuration"""
|
17 |
+
|
18 |
+
from transformers.configuration_utils import PretrainedConfig
|
19 |
+
from transformers.utils import logging
|
20 |
+
|
21 |
+
logger = logging.get_logger(__name__)
|
22 |
+
|
23 |
+
|
24 |
+
# Modified from transformers.model.llama.configuration_llama.LlamaConfig
|
25 |
+
class SkyworkLM2Config(PretrainedConfig):
|
26 |
+
r"""
|
27 |
+
Args:
|
28 |
+
vocab_size (`int`, *optional*, defaults to 32000):
|
29 |
+
Vocabulary size of the SkyworkLM2 model. Defines the number of different tokens that can be represented by the
|
30 |
+
`inputs_ids` passed when calling [`SkyworkLM2Model`]
|
31 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
32 |
+
Dimension of the hidden representations.
|
33 |
+
intermediate_size (`int`, *optional*, defaults to 11008):
|
34 |
+
Dimension of the MLP representations.
|
35 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
36 |
+
Number of hidden layers in the Transformer encoder.
|
37 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
38 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
39 |
+
num_key_value_heads (`int`, *optional*):
|
40 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
41 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
42 |
+
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
43 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
44 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
45 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
46 |
+
`num_attention_heads`.
|
47 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
48 |
+
The non-linear activation function (function or string) in the decoder.
|
49 |
+
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
50 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
51 |
+
just in case (e.g., 512 or 1024 or 2048).
|
52 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
53 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
54 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-12):
|
55 |
+
The epsilon used by the rms normalization layers.
|
56 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
57 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
58 |
+
relevant if `config.is_decoder=True`.
|
59 |
+
tie_word_embeddings(`bool`, *optional*, defaults to `False`):
|
60 |
+
Whether to tie weight embeddings
|
61 |
+
Example:
|
62 |
+
|
63 |
+
"""
|
64 |
+
_auto_class = 'AutoConfig'
|
65 |
+
|
66 |
+
def __init__(
|
67 |
+
self,
|
68 |
+
vocab_size=103168,
|
69 |
+
hidden_size=4096,
|
70 |
+
intermediate_size=11008,
|
71 |
+
num_hidden_layers=32,
|
72 |
+
num_attention_heads=32,
|
73 |
+
num_key_value_heads=None,
|
74 |
+
hidden_act='silu',
|
75 |
+
max_position_embeddings=2048,
|
76 |
+
initializer_range=0.02,
|
77 |
+
rms_norm_eps=1e-6,
|
78 |
+
use_cache=True,
|
79 |
+
pad_token_id=0,
|
80 |
+
bos_token_id=1,
|
81 |
+
eos_token_id=2,
|
82 |
+
tie_word_embeddings=False,
|
83 |
+
bias=True,
|
84 |
+
rope_theta=10000,
|
85 |
+
rope_scaling=None,
|
86 |
+
attn_implementation='eager',
|
87 |
+
**kwargs,
|
88 |
+
):
|
89 |
+
self.vocab_size = vocab_size
|
90 |
+
self.max_position_embeddings = max_position_embeddings
|
91 |
+
self.hidden_size = hidden_size
|
92 |
+
self.intermediate_size = intermediate_size
|
93 |
+
self.num_hidden_layers = num_hidden_layers
|
94 |
+
self.num_attention_heads = num_attention_heads
|
95 |
+
self.bias = bias
|
96 |
+
|
97 |
+
if num_key_value_heads is None:
|
98 |
+
num_key_value_heads = num_attention_heads
|
99 |
+
self.num_key_value_heads = num_key_value_heads
|
100 |
+
|
101 |
+
self.hidden_act = hidden_act
|
102 |
+
self.initializer_range = initializer_range
|
103 |
+
self.rms_norm_eps = rms_norm_eps
|
104 |
+
self.use_cache = use_cache
|
105 |
+
self.rope_theta = rope_theta
|
106 |
+
self.rope_scaling = rope_scaling
|
107 |
+
self._rope_scaling_validation()
|
108 |
+
|
109 |
+
self.attn_implementation = attn_implementation
|
110 |
+
if self.attn_implementation is None:
|
111 |
+
self.attn_implementation = 'eager'
|
112 |
+
super().__init__(
|
113 |
+
pad_token_id=pad_token_id,
|
114 |
+
bos_token_id=bos_token_id,
|
115 |
+
eos_token_id=eos_token_id,
|
116 |
+
tie_word_embeddings=tie_word_embeddings,
|
117 |
+
**kwargs,
|
118 |
+
)
|
119 |
+
|
120 |
+
def _rope_scaling_validation(self):
|
121 |
+
"""
|
122 |
+
Validate the `rope_scaling` configuration.
|
123 |
+
"""
|
124 |
+
if self.rope_scaling is None:
|
125 |
+
return
|
126 |
+
|
127 |
+
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
|
128 |
+
raise ValueError(
|
129 |
+
'`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, '
|
130 |
+
f'got {self.rope_scaling}'
|
131 |
+
)
|
132 |
+
rope_scaling_type = self.rope_scaling.get('type', None)
|
133 |
+
rope_scaling_factor = self.rope_scaling.get('factor', None)
|
134 |
+
if rope_scaling_type is None or rope_scaling_type not in ['linear', 'dynamic']:
|
135 |
+
raise ValueError(
|
136 |
+
f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
|
137 |
+
)
|
138 |
+
if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor < 1.0:
|
139 |
+
raise ValueError(f"`rope_scaling`'s factor field must be a float >= 1, got {rope_scaling_factor}")
|
configuration_skywork_vit.py
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from typing import Union
|
3 |
+
|
4 |
+
from transformers.configuration_utils import PretrainedConfig
|
5 |
+
from transformers.utils import logging
|
6 |
+
|
7 |
+
logger = logging.get_logger(__name__)
|
8 |
+
|
9 |
+
|
10 |
+
class SkyworkVisionConfig(PretrainedConfig):
|
11 |
+
r"""
|
12 |
+
Args:
|
13 |
+
num_channels (`int`, *optional*, defaults to 3):
|
14 |
+
Number of color channels in the input images (e.g., 3 for RGB).
|
15 |
+
patch_size (`int`, *optional*, defaults to 14):
|
16 |
+
The size (resolution) of each patch.
|
17 |
+
image_size (`int`, *optional*, defaults to 224):
|
18 |
+
The size (resolution) of each image.
|
19 |
+
qkv_bias (`bool`, *optional*, defaults to `False`):
|
20 |
+
Whether to add a bias to the queries and values in the self-attention layers.
|
21 |
+
hidden_size (`int`, *optional*, defaults to 3200):
|
22 |
+
Dimensionality of the encoder layers and the pooler layer.
|
23 |
+
num_attention_heads (`int`, *optional*, defaults to 25):
|
24 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
25 |
+
intermediate_size (`int`, *optional*, defaults to 12800):
|
26 |
+
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
27 |
+
qk_normalization (`bool`, *optional*, defaults to `True`):
|
28 |
+
Whether to normalize the queries and keys in the self-attention layers.
|
29 |
+
num_hidden_layers (`int`, *optional*, defaults to 48):
|
30 |
+
Number of hidden layers in the Transformer encoder.
|
31 |
+
use_flash_attn (`bool`, *optional*, defaults to `True`):
|
32 |
+
Whether to use flash attention mechanism.
|
33 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
|
34 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
35 |
+
`"relu"`, `"selu"` and `"gelu_new"` ``"gelu"` are supported.
|
36 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-6):
|
37 |
+
The epsilon used by the layer normalization layers.
|
38 |
+
dropout (`float`, *optional*, defaults to 0.0):
|
39 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
40 |
+
drop_path_rate (`float`, *optional*, defaults to 0.0):
|
41 |
+
Dropout rate for stochastic depth.
|
42 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
43 |
+
The dropout ratio for the attention probabilities.
|
44 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
45 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
46 |
+
initializer_factor (`float`, *optional*, defaults to 0.1):
|
47 |
+
A factor for layer scale.
|
48 |
+
"""
|
49 |
+
|
50 |
+
|
51 |
+
def __init__(
|
52 |
+
self,
|
53 |
+
num_channels=3,
|
54 |
+
patch_size=14,
|
55 |
+
image_size=224,
|
56 |
+
qkv_bias=False,
|
57 |
+
hidden_size=3200,
|
58 |
+
num_attention_heads=25,
|
59 |
+
intermediate_size=12800,
|
60 |
+
qk_normalization=True,
|
61 |
+
num_hidden_layers=48,
|
62 |
+
use_flash_attn=True,
|
63 |
+
hidden_act='gelu',
|
64 |
+
norm_type='rms_norm',
|
65 |
+
layer_norm_eps=1e-6,
|
66 |
+
dropout=0.0,
|
67 |
+
drop_path_rate=0.0,
|
68 |
+
attention_dropout=0.0,
|
69 |
+
initializer_range=0.02,
|
70 |
+
initializer_factor=0.1,
|
71 |
+
**kwargs,
|
72 |
+
):
|
73 |
+
super().__init__(**kwargs)
|
74 |
+
|
75 |
+
self.hidden_size = hidden_size
|
76 |
+
self.intermediate_size = intermediate_size
|
77 |
+
self.dropout = dropout
|
78 |
+
self.drop_path_rate = drop_path_rate
|
79 |
+
self.num_hidden_layers = num_hidden_layers
|
80 |
+
self.num_attention_heads = num_attention_heads
|
81 |
+
self.num_channels = num_channels
|
82 |
+
self.patch_size = patch_size
|
83 |
+
self.image_size = image_size
|
84 |
+
self.initializer_range = initializer_range
|
85 |
+
self.initializer_factor = initializer_factor
|
86 |
+
self.attention_dropout = attention_dropout
|
87 |
+
self.layer_norm_eps = layer_norm_eps
|
88 |
+
self.hidden_act = hidden_act
|
89 |
+
self.norm_type = norm_type
|
90 |
+
self.qkv_bias = qkv_bias
|
91 |
+
self.qk_normalization = qk_normalization
|
92 |
+
self.use_flash_attn = use_flash_attn
|
93 |
+
|
94 |
+
@classmethod
|
95 |
+
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> 'PretrainedConfig':
|
96 |
+
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
97 |
+
|
98 |
+
if 'vision_config' in config_dict:
|
99 |
+
config_dict = config_dict['vision_config']
|
100 |
+
|
101 |
+
return cls.from_dict(config_dict, **kwargs)
|
conversation.py
ADDED
@@ -0,0 +1,163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Conversation prompt templates.
|
3 |
+
|
4 |
+
We kindly request that you import fastchat instead of copying this file if you wish to use it.
|
5 |
+
If you have changes in mind, please contribute back so the community can benefit collectively and continue to maintain these valuable templates.
|
6 |
+
"""
|
7 |
+
|
8 |
+
import dataclasses
|
9 |
+
from enum import IntEnum, auto
|
10 |
+
from typing import Any, Dict, List, Tuple, Union
|
11 |
+
|
12 |
+
|
13 |
+
class SeparatorStyle(IntEnum):
|
14 |
+
"""Separator styles."""
|
15 |
+
|
16 |
+
ADD_COLON_SINGLE = auto()
|
17 |
+
ADD_COLON_TWO = auto()
|
18 |
+
ADD_COLON_SPACE_SINGLE = auto()
|
19 |
+
NO_COLON_SINGLE = auto()
|
20 |
+
NO_COLON_TWO = auto()
|
21 |
+
ADD_NEW_LINE_SINGLE = auto()
|
22 |
+
LLAMA2 = auto()
|
23 |
+
CHATGLM = auto()
|
24 |
+
CHATML = auto()
|
25 |
+
DOLLY = auto()
|
26 |
+
RWKV = auto()
|
27 |
+
PHOENIX = auto()
|
28 |
+
ROBIN = auto()
|
29 |
+
FALCON_CHAT = auto()
|
30 |
+
CHATGLM3 = auto()
|
31 |
+
MPT = auto()
|
32 |
+
|
33 |
+
|
34 |
+
@dataclasses.dataclass
|
35 |
+
class Conversation:
|
36 |
+
"""A class that manages prompt templates and keeps all conversation history."""
|
37 |
+
|
38 |
+
# The name of this template
|
39 |
+
name: str
|
40 |
+
# The template of the system prompt
|
41 |
+
system_template: str = '{system_message}'
|
42 |
+
# The system message
|
43 |
+
system_message: str = ''
|
44 |
+
# The names of two roles
|
45 |
+
roles: Tuple[str] = ('USER', 'ASSISTANT')
|
46 |
+
# All messages. Each item is (role, message).
|
47 |
+
messages: List[List[str]] = ()
|
48 |
+
# The number of few shot examples
|
49 |
+
offset: int = 0
|
50 |
+
# The separator style and configurations
|
51 |
+
sep_style: SeparatorStyle = SeparatorStyle.ADD_COLON_SINGLE
|
52 |
+
sep: str = '\n'
|
53 |
+
sep2: str = None
|
54 |
+
# Stop criteria (the default one is EOS token)
|
55 |
+
stop_str: Union[str, List[str]] = None
|
56 |
+
# Stops generation if meeting any token in this list
|
57 |
+
stop_token_ids: List[int] = None
|
58 |
+
|
59 |
+
def get_prompt(self) -> str:
|
60 |
+
"""Get the prompt for generation."""
|
61 |
+
system_prompt = self.system_template.format(system_message=self.system_message)
|
62 |
+
ret = system_prompt
|
63 |
+
for role, message in self.messages:
|
64 |
+
if message:
|
65 |
+
if type(message) is tuple:
|
66 |
+
message, _, _ = message
|
67 |
+
ret += role + message
|
68 |
+
else:
|
69 |
+
ret += role
|
70 |
+
|
71 |
+
return ret
|
72 |
+
|
73 |
+
def set_system_message(self, system_message: str):
|
74 |
+
"""Set the system message."""
|
75 |
+
self.system_message = system_message
|
76 |
+
|
77 |
+
def append_message(self, role: str, message: str):
|
78 |
+
"""Append a new message."""
|
79 |
+
self.messages.append([role, message])
|
80 |
+
|
81 |
+
def update_last_message(self, message: str):
|
82 |
+
"""Update the last output.
|
83 |
+
|
84 |
+
The last message is typically set to be None when constructing the prompt,
|
85 |
+
so we need to update it in-place after getting the response from a model.
|
86 |
+
"""
|
87 |
+
self.messages[-1][1] = message
|
88 |
+
|
89 |
+
def to_gradio_chatbot(self):
|
90 |
+
"""Convert the conversation to gradio chatbot format."""
|
91 |
+
ret = []
|
92 |
+
for i, (role, msg) in enumerate(self.messages[self.offset :]):
|
93 |
+
if i % 2 == 0:
|
94 |
+
ret.append([msg, None])
|
95 |
+
else:
|
96 |
+
ret[-1][-1] = msg
|
97 |
+
return ret
|
98 |
+
|
99 |
+
def to_openai_api_messages(self):
|
100 |
+
"""Convert the conversation to OpenAI chat completion format."""
|
101 |
+
ret = [{'role': 'system', 'content': self.system_message}]
|
102 |
+
|
103 |
+
for i, (_, msg) in enumerate(self.messages[self.offset :]):
|
104 |
+
if i % 2 == 0:
|
105 |
+
ret.append({'role': 'user', 'content': msg})
|
106 |
+
else:
|
107 |
+
if msg is not None:
|
108 |
+
ret.append({'role': 'assistant', 'content': msg})
|
109 |
+
return ret
|
110 |
+
|
111 |
+
def copy(self):
|
112 |
+
return Conversation(
|
113 |
+
name=self.name,
|
114 |
+
system_template=self.system_template,
|
115 |
+
system_message=self.system_message,
|
116 |
+
roles=self.roles,
|
117 |
+
messages=[[x, y] for x, y in self.messages],
|
118 |
+
offset=self.offset,
|
119 |
+
sep_style=self.sep_style,
|
120 |
+
sep=self.sep,
|
121 |
+
sep2=self.sep2,
|
122 |
+
stop_str=self.stop_str,
|
123 |
+
stop_token_ids=self.stop_token_ids,
|
124 |
+
)
|
125 |
+
|
126 |
+
def dict(self):
|
127 |
+
return {
|
128 |
+
'template_name': self.name,
|
129 |
+
'system_message': self.system_message,
|
130 |
+
'roles': self.roles,
|
131 |
+
'messages': self.messages,
|
132 |
+
'offset': self.offset,
|
133 |
+
}
|
134 |
+
|
135 |
+
|
136 |
+
# A global registry for all conversation templates
|
137 |
+
conv_templates: Dict[str, Conversation] = {}
|
138 |
+
|
139 |
+
|
140 |
+
def register_conv_template(template: Conversation, override: bool = False):
|
141 |
+
"""Register a new conversation template."""
|
142 |
+
if not override:
|
143 |
+
assert (
|
144 |
+
template.name not in conv_templates
|
145 |
+
), f'{template.name} has been registered.'
|
146 |
+
|
147 |
+
conv_templates[template.name] = template
|
148 |
+
|
149 |
+
|
150 |
+
def get_conv_template(name: str) -> Conversation:
|
151 |
+
"""Get a conversation template."""
|
152 |
+
return conv_templates[name].copy()
|
153 |
+
|
154 |
+
register_conv_template(
|
155 |
+
Conversation(
|
156 |
+
name='skywork-r1v-chat',
|
157 |
+
system_template='<|begin▁of▁sentence|>{system_message}',
|
158 |
+
system_message='',
|
159 |
+
roles=('<|User|>\n', '<|Assistant|><think>\n'),
|
160 |
+
sep_style=SeparatorStyle.MPT,
|
161 |
+
sep='<|end▁of▁sentence|>',
|
162 |
+
)
|
163 |
+
)
|
generation_config.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 151646,
|
4 |
+
"eos_token_id": 151643,
|
5 |
+
"do_sample": true,
|
6 |
+
"temperature": 0.6,
|
7 |
+
"top_p": 0.95,
|
8 |
+
"transformers_version": "4.39.3"
|
9 |
+
}
|
inputs_stats.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1555713a03276cca494bc28af4d0ee2ba9650c1fdcc761f7adea62c6fc4388ac
|
3 |
+
size 37987294
|
modeling_skywork_chat.py
ADDED
@@ -0,0 +1,356 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import warnings
|
2 |
+
from typing import List, Optional, Tuple, Union
|
3 |
+
|
4 |
+
import torch.utils.checkpoint
|
5 |
+
import transformers
|
6 |
+
from torch import nn
|
7 |
+
from torch.nn import CrossEntropyLoss
|
8 |
+
from transformers import (AutoModel, GenerationConfig, LlamaForCausalLM,
|
9 |
+
LlamaTokenizer)
|
10 |
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
11 |
+
from transformers.modeling_utils import PreTrainedModel
|
12 |
+
from transformers.utils import ModelOutput, logging
|
13 |
+
|
14 |
+
from .configuration_skywork_chat import SkyworkChatConfig
|
15 |
+
from .conversation import get_conv_template
|
16 |
+
from .modeling_skywork_vit import SkyworkVisionModel, has_flash_attn
|
17 |
+
from .modeling_skywork_lm2 import SkyworkLM2ForCausalLM
|
18 |
+
|
19 |
+
from transformers import Qwen2Config, Qwen2ForCausalLM
|
20 |
+
|
21 |
+
logger = logging.get_logger(__name__)
|
22 |
+
|
23 |
+
|
24 |
+
def version_cmp(v1, v2, op='eq'):
|
25 |
+
import operator
|
26 |
+
|
27 |
+
from packaging import version
|
28 |
+
op_func = getattr(operator, op)
|
29 |
+
return op_func(version.parse(v1), version.parse(v2))
|
30 |
+
|
31 |
+
|
32 |
+
class SkyworkChatModel(PreTrainedModel):
|
33 |
+
config_class = SkyworkChatConfig
|
34 |
+
main_input_name = 'pixel_values'
|
35 |
+
base_model_prefix = 'language_model'
|
36 |
+
_supports_flash_attn_2 = True
|
37 |
+
_no_split_modules = ['SkyworkVisionModel', 'LlamaDecoderLayer', 'SkyworkLM2DecoderLayer']
|
38 |
+
|
39 |
+
def __init__(self, config: SkyworkChatConfig, vision_model=None, language_model=None, use_flash_attn=True):
|
40 |
+
super().__init__(config)
|
41 |
+
|
42 |
+
assert version_cmp(transformers.__version__, '4.36.2', 'ge')
|
43 |
+
image_size = config.force_image_size or config.vision_config.image_size
|
44 |
+
patch_size = config.vision_config.patch_size
|
45 |
+
self.patch_size = patch_size
|
46 |
+
self.select_layer = config.select_layer
|
47 |
+
self.template = config.template
|
48 |
+
self.num_image_token = int((image_size // patch_size) ** 2 * (config.downsample_ratio ** 2))
|
49 |
+
self.downsample_ratio = config.downsample_ratio
|
50 |
+
self.ps_version = config.ps_version
|
51 |
+
use_flash_attn = use_flash_attn if has_flash_attn else False
|
52 |
+
config.vision_config.use_flash_attn = True if use_flash_attn else False
|
53 |
+
config.llm_config.attn_implementation = 'flash_attention_2' if use_flash_attn else 'eager'
|
54 |
+
|
55 |
+
logger.info(f'num_image_token: {self.num_image_token}')
|
56 |
+
logger.info(f'ps_version: {self.ps_version}')
|
57 |
+
if vision_model is not None:
|
58 |
+
self.vision_model = vision_model
|
59 |
+
else:
|
60 |
+
self.vision_model = SkyworkVisionModel(config.vision_config)
|
61 |
+
if language_model is not None:
|
62 |
+
self.language_model = language_model
|
63 |
+
else:
|
64 |
+
if config.llm_config.architectures[0] == 'LlamaForCausalLM':
|
65 |
+
self.language_model = LlamaForCausalLM(config.llm_config)
|
66 |
+
elif config.llm_config.architectures[0] == 'SkyworkLM2ForCausalLM':
|
67 |
+
self.language_model = SkyworkLM2ForCausalLM(config.llm_config)
|
68 |
+
elif config.llm_config.architectures[0] == 'Qwen2ForCausalLM':
|
69 |
+
self.language_model = Qwen2ForCausalLM(config.llm_config)
|
70 |
+
else:
|
71 |
+
raise NotImplementedError(f'{config.llm_config.architectures[0]} is not implemented.')
|
72 |
+
|
73 |
+
vit_hidden_size = config.vision_config.hidden_size
|
74 |
+
llm_hidden_size = config.llm_config.hidden_size
|
75 |
+
|
76 |
+
self.mlp1 = nn.Sequential(
|
77 |
+
nn.LayerNorm(vit_hidden_size * int(1 / self.downsample_ratio) ** 2),
|
78 |
+
nn.Linear(vit_hidden_size * int(1 / self.downsample_ratio) ** 2, llm_hidden_size),
|
79 |
+
nn.GELU(),
|
80 |
+
nn.Linear(llm_hidden_size, llm_hidden_size)
|
81 |
+
)
|
82 |
+
|
83 |
+
self.img_context_token_id = None
|
84 |
+
self.conv_template = get_conv_template(self.template)
|
85 |
+
self.system_message = self.conv_template.system_message
|
86 |
+
|
87 |
+
def forward(
|
88 |
+
self,
|
89 |
+
pixel_values: torch.FloatTensor,
|
90 |
+
input_ids: torch.LongTensor = None,
|
91 |
+
attention_mask: Optional[torch.Tensor] = None,
|
92 |
+
position_ids: Optional[torch.LongTensor] = None,
|
93 |
+
image_flags: Optional[torch.LongTensor] = None,
|
94 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
95 |
+
labels: Optional[torch.LongTensor] = None,
|
96 |
+
use_cache: Optional[bool] = None,
|
97 |
+
output_attentions: Optional[bool] = None,
|
98 |
+
output_hidden_states: Optional[bool] = None,
|
99 |
+
return_dict: Optional[bool] = None,
|
100 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
101 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
102 |
+
|
103 |
+
image_flags = image_flags.squeeze(-1)
|
104 |
+
input_embeds = self.language_model.get_input_embeddings()(input_ids).clone()
|
105 |
+
print(f"pixel_values shape: {pixel_values.shape}")
|
106 |
+
vit_embeds = self.extract_feature(pixel_values)
|
107 |
+
print(f"vit_embeds shape: {vit_embeds.shape}")
|
108 |
+
vit_embeds = vit_embeds[image_flags == 1]
|
109 |
+
vit_batch_size = pixel_values.shape[0]
|
110 |
+
|
111 |
+
B, N, C = input_embeds.shape
|
112 |
+
input_embeds = input_embeds.reshape(B * N, C)
|
113 |
+
|
114 |
+
if torch.distributed.get_rank() == 0 and torch.distributed.is_initialized():
|
115 |
+
print(f'dynamic ViT batch size: {vit_batch_size}, images per sample: {vit_batch_size / B}, dynamic token length: {N}')
|
116 |
+
|
117 |
+
input_ids = input_ids.reshape(B * N)
|
118 |
+
selected = (input_ids == self.img_context_token_id)
|
119 |
+
print(f"input_embeds shape: {input_embeds.shape}, self.img_context_token_id: {self.img_context_token_id}, input_ids shape: {input_ids.shape}, selected: {selected}, C: {C}, vit_embeds shape: {vit_embeds.shape}")
|
120 |
+
try:
|
121 |
+
input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds.reshape(-1, C)
|
122 |
+
except Exception as e:
|
123 |
+
vit_embeds = vit_embeds.reshape(-1, C)
|
124 |
+
print(f'warning: {e}, input_embeds[selected].shape={input_embeds[selected].shape}, '
|
125 |
+
f'vit_embeds.shape={vit_embeds.shape}')
|
126 |
+
n_token = selected.sum()
|
127 |
+
input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds[:n_token]
|
128 |
+
|
129 |
+
input_embeds = input_embeds.reshape(B, N, C)
|
130 |
+
|
131 |
+
outputs = self.language_model(
|
132 |
+
inputs_embeds=input_embeds,
|
133 |
+
attention_mask=attention_mask,
|
134 |
+
position_ids=position_ids,
|
135 |
+
past_key_values=past_key_values,
|
136 |
+
use_cache=use_cache,
|
137 |
+
output_attentions=output_attentions,
|
138 |
+
output_hidden_states=output_hidden_states,
|
139 |
+
return_dict=return_dict,
|
140 |
+
)
|
141 |
+
logits = outputs.logits
|
142 |
+
|
143 |
+
loss = None
|
144 |
+
if labels is not None:
|
145 |
+
# Shift so that tokens < n predict n
|
146 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
147 |
+
shift_labels = labels[..., 1:].contiguous()
|
148 |
+
# Flatten the tokens
|
149 |
+
loss_fct = CrossEntropyLoss()
|
150 |
+
shift_logits = shift_logits.view(-1, self.language_model.config.vocab_size)
|
151 |
+
shift_labels = shift_labels.view(-1)
|
152 |
+
# Enable model parallelism
|
153 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
154 |
+
loss = loss_fct(shift_logits, shift_labels)
|
155 |
+
|
156 |
+
if not return_dict:
|
157 |
+
output = (logits,) + outputs[1:]
|
158 |
+
return (loss,) + output if loss is not None else output
|
159 |
+
|
160 |
+
return CausalLMOutputWithPast(
|
161 |
+
loss=loss,
|
162 |
+
logits=logits,
|
163 |
+
past_key_values=outputs.past_key_values,
|
164 |
+
hidden_states=outputs.hidden_states,
|
165 |
+
attentions=outputs.attentions,
|
166 |
+
)
|
167 |
+
|
168 |
+
def pixel_shuffle(self, x, scale_factor=0.5):
|
169 |
+
n, w, h, c = x.size()
|
170 |
+
# N, W, H, C --> N, W, H * scale, C // scale
|
171 |
+
x = x.view(n, w, int(h * scale_factor), int(c / scale_factor))
|
172 |
+
# N, W, H * scale, C // scale --> N, H * scale, W, C // scale
|
173 |
+
x = x.permute(0, 2, 1, 3).contiguous()
|
174 |
+
# N, H * scale, W, C // scale --> N, H * scale, W * scale, C // (scale ** 2)
|
175 |
+
x = x.view(n, int(h * scale_factor), int(w * scale_factor),
|
176 |
+
int(c / (scale_factor * scale_factor)))
|
177 |
+
if self.ps_version == 'v1':
|
178 |
+
warnings.warn("In ps_version 'v1', the height and width have not been swapped back, "
|
179 |
+
'which results in a transposed image.')
|
180 |
+
else:
|
181 |
+
x = x.permute(0, 2, 1, 3).contiguous()
|
182 |
+
return x
|
183 |
+
|
184 |
+
def extract_feature(self, pixel_values):
|
185 |
+
if self.select_layer == -1:
|
186 |
+
vit_embeds = self.vision_model(
|
187 |
+
pixel_values=pixel_values,
|
188 |
+
output_hidden_states=False,
|
189 |
+
return_dict=True).last_hidden_state
|
190 |
+
else:
|
191 |
+
vit_embeds = self.vision_model(
|
192 |
+
pixel_values=pixel_values,
|
193 |
+
output_hidden_states=True,
|
194 |
+
return_dict=True).hidden_states[self.select_layer]
|
195 |
+
vit_embeds = vit_embeds[:, 1:, :]
|
196 |
+
|
197 |
+
h = w = int(vit_embeds.shape[1] ** 0.5)
|
198 |
+
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1)
|
199 |
+
vit_embeds = self.pixel_shuffle(vit_embeds, scale_factor=self.downsample_ratio)
|
200 |
+
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1])
|
201 |
+
vit_embeds = self.mlp1(vit_embeds)
|
202 |
+
return vit_embeds
|
203 |
+
|
204 |
+
def batch_chat(self, tokenizer, pixel_values, questions, generation_config, num_patches_list=None,
|
205 |
+
history=None, return_history=False, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>',
|
206 |
+
IMG_CONTEXT_TOKEN='<IMG_CONTEXT>', verbose=False, image_counts=None):
|
207 |
+
if history is not None or return_history:
|
208 |
+
print('Now multi-turn chat is not supported in batch_chat.')
|
209 |
+
raise NotImplementedError
|
210 |
+
|
211 |
+
if image_counts is not None:
|
212 |
+
num_patches_list = image_counts
|
213 |
+
print('Warning: `image_counts` is deprecated. Please use `num_patches_list` instead.')
|
214 |
+
|
215 |
+
img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
|
216 |
+
self.img_context_token_id = img_context_token_id
|
217 |
+
|
218 |
+
|
219 |
+
if verbose and pixel_values is not None:
|
220 |
+
image_bs = pixel_values.shape[0]
|
221 |
+
print(f'dynamic ViT batch size: {image_bs}')
|
222 |
+
|
223 |
+
queries = []
|
224 |
+
for idx, num_patches in enumerate(num_patches_list):
|
225 |
+
question = questions[idx]
|
226 |
+
if pixel_values is not None and '<image>' not in question:
|
227 |
+
question = '<image>\n' + question
|
228 |
+
template = get_conv_template(self.template)
|
229 |
+
template.system_message = self.system_message
|
230 |
+
template.append_message(template.roles[0], question)
|
231 |
+
template.append_message(template.roles[1], None)
|
232 |
+
query = template.get_prompt()
|
233 |
+
|
234 |
+
image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
|
235 |
+
query = query.replace('<image>', image_tokens, 1)
|
236 |
+
queries.append(query)
|
237 |
+
|
238 |
+
tokenizer.padding_side = 'left'
|
239 |
+
model_inputs = tokenizer(queries, return_tensors='pt', padding=True)
|
240 |
+
input_ids = model_inputs['input_ids'].to(self.device)
|
241 |
+
attention_mask = model_inputs['attention_mask'].to(self.device)
|
242 |
+
eos_token_id = tokenizer.convert_tokens_to_ids(template.sep.strip())
|
243 |
+
generation_config['eos_token_id'] = eos_token_id
|
244 |
+
generation_output = self.generate(
|
245 |
+
pixel_values=pixel_values,
|
246 |
+
input_ids=input_ids,
|
247 |
+
attention_mask=attention_mask,
|
248 |
+
**generation_config
|
249 |
+
)
|
250 |
+
responses = tokenizer.batch_decode(generation_output, skip_special_tokens=True)
|
251 |
+
responses = [response.split(template.sep.strip())[0].strip() for response in responses]
|
252 |
+
return responses
|
253 |
+
|
254 |
+
def chat(self, tokenizer, pixel_values, question, generation_config, history=None, return_history=False,
|
255 |
+
num_patches_list=None, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>', IMG_CONTEXT_TOKEN='<IMG_CONTEXT>',
|
256 |
+
verbose=False):
|
257 |
+
|
258 |
+
if history is None and pixel_values is not None and '<image>' not in question:
|
259 |
+
question = '<image>\n' + question
|
260 |
+
|
261 |
+
if num_patches_list is None:
|
262 |
+
num_patches_list = [pixel_values.shape[0]] if pixel_values is not None else []
|
263 |
+
assert pixel_values is None or len(pixel_values) == sum(num_patches_list)
|
264 |
+
|
265 |
+
img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
|
266 |
+
self.img_context_token_id = img_context_token_id
|
267 |
+
|
268 |
+
template = get_conv_template(self.template)
|
269 |
+
template.system_message = self.system_message
|
270 |
+
eos_token_id = tokenizer.convert_tokens_to_ids(template.sep.strip())
|
271 |
+
|
272 |
+
|
273 |
+
history = [] if history is None else history
|
274 |
+
for (old_question, old_answer) in history:
|
275 |
+
template.append_message(template.roles[0], old_question)
|
276 |
+
template.append_message(template.roles[1], old_answer)
|
277 |
+
template.append_message(template.roles[0], question)
|
278 |
+
template.append_message(template.roles[1], None)
|
279 |
+
query = template.get_prompt()
|
280 |
+
|
281 |
+
|
282 |
+
if verbose and pixel_values is not None:
|
283 |
+
image_bs = pixel_values.shape[0]
|
284 |
+
print(f'dynamic ViT batch size: {image_bs}')
|
285 |
+
|
286 |
+
for num_patches in num_patches_list:
|
287 |
+
image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
|
288 |
+
query = query.replace('<image>', image_tokens, 1)
|
289 |
+
|
290 |
+
|
291 |
+
model_inputs = tokenizer(query, return_tensors='pt')
|
292 |
+
input_ids = model_inputs['input_ids'].to(self.device)
|
293 |
+
attention_mask = model_inputs['attention_mask'].to(self.device)
|
294 |
+
generation_config['eos_token_id'] = eos_token_id
|
295 |
+
generation_output = self.generate(
|
296 |
+
pixel_values=pixel_values,
|
297 |
+
input_ids=input_ids,
|
298 |
+
attention_mask=attention_mask,
|
299 |
+
**generation_config
|
300 |
+
)
|
301 |
+
response = tokenizer.batch_decode(generation_output, skip_special_tokens=True)[0]
|
302 |
+
response = response.split(template.sep.strip())[0].strip()
|
303 |
+
history.append((question, response))
|
304 |
+
|
305 |
+
if return_history:
|
306 |
+
return response, history
|
307 |
+
else:
|
308 |
+
query_to_print = query.replace(IMG_CONTEXT_TOKEN, '')
|
309 |
+
query_to_print = query_to_print.replace(f'{IMG_START_TOKEN}{IMG_END_TOKEN}', '<image>')
|
310 |
+
if verbose:
|
311 |
+
print(query_to_print, response)
|
312 |
+
return response
|
313 |
+
|
314 |
+
@torch.no_grad()
|
315 |
+
def generate(
|
316 |
+
self,
|
317 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
318 |
+
input_ids: Optional[torch.FloatTensor] = None,
|
319 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
320 |
+
visual_features: Optional[torch.FloatTensor] = None,
|
321 |
+
generation_config: Optional[GenerationConfig] = None,
|
322 |
+
output_hidden_states: Optional[bool] = None,
|
323 |
+
**generate_kwargs,
|
324 |
+
) -> torch.LongTensor:
|
325 |
+
|
326 |
+
assert self.img_context_token_id is not None
|
327 |
+
if pixel_values is not None:
|
328 |
+
if visual_features is not None:
|
329 |
+
vit_embeds = visual_features
|
330 |
+
else:
|
331 |
+
vit_embeds = self.extract_feature(pixel_values)
|
332 |
+
input_embeds = self.language_model.get_input_embeddings()(input_ids)
|
333 |
+
B, N, C = input_embeds.shape
|
334 |
+
input_embeds = input_embeds.reshape(B * N, C)
|
335 |
+
|
336 |
+
input_ids = input_ids.reshape(B * N)
|
337 |
+
selected = (input_ids == self.img_context_token_id)
|
338 |
+
|
339 |
+
assert selected.sum() != 0
|
340 |
+
input_embeds[selected] = vit_embeds.reshape(-1, C).to(input_embeds.device)
|
341 |
+
|
342 |
+
input_embeds = input_embeds.reshape(B, N, C)
|
343 |
+
else:
|
344 |
+
input_embeds = self.language_model.get_input_embeddings()(input_ids)
|
345 |
+
|
346 |
+
|
347 |
+
outputs = self.language_model.generate(
|
348 |
+
inputs_embeds=input_embeds,
|
349 |
+
attention_mask=attention_mask,
|
350 |
+
generation_config=generation_config,
|
351 |
+
output_hidden_states=output_hidden_states,
|
352 |
+
use_cache=True,
|
353 |
+
**generate_kwargs,
|
354 |
+
)
|
355 |
+
|
356 |
+
return outputs
|
modeling_skywork_lm2.py
ADDED
@@ -0,0 +1,1403 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) The Skywork team and The HuggingFace Inc. team. All rights reserved.
|
2 |
+
#
|
3 |
+
# This code is based on transformers/src/transformers/models/llama/modeling_llama.py
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
""" PyTorch SkyworkLM2 model."""
|
17 |
+
import math
|
18 |
+
import queue
|
19 |
+
import threading
|
20 |
+
import warnings
|
21 |
+
from typing import List, Optional, Tuple, Union
|
22 |
+
|
23 |
+
import torch
|
24 |
+
import torch.nn.functional as F
|
25 |
+
import torch.utils.checkpoint
|
26 |
+
from einops import rearrange
|
27 |
+
from torch import nn
|
28 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
29 |
+
from transformers.activations import ACT2FN
|
30 |
+
from transformers.modeling_outputs import (BaseModelOutputWithPast,
|
31 |
+
CausalLMOutputWithPast,
|
32 |
+
SequenceClassifierOutputWithPast)
|
33 |
+
from transformers.modeling_utils import PreTrainedModel
|
34 |
+
from transformers.utils import (add_start_docstrings,
|
35 |
+
add_start_docstrings_to_model_forward, logging,
|
36 |
+
replace_return_docstrings)
|
37 |
+
|
38 |
+
try:
|
39 |
+
from transformers.generation.streamers import BaseStreamer
|
40 |
+
except:
|
41 |
+
BaseStreamer = None
|
42 |
+
|
43 |
+
from .configuration_skywork_lm2 import SkyworkLM2Config
|
44 |
+
|
45 |
+
logger = logging.get_logger(__name__)
|
46 |
+
|
47 |
+
_CONFIG_FOR_DOC = 'SkyworkLM2Config'
|
48 |
+
|
49 |
+
flash_attn_func, flash_attn_varlen_func = None, None
|
50 |
+
pad_input, index_first_axis, unpad_input = None, None, None
|
51 |
+
try:
|
52 |
+
from flash_attn import flash_attn_func as _flash_attn_func
|
53 |
+
from flash_attn import flash_attn_varlen_func as _flash_attn_varlen_func
|
54 |
+
from flash_attn.bert_padding import index_first_axis as _index_first_axis
|
55 |
+
from flash_attn.bert_padding import pad_input as _pad_input
|
56 |
+
from flash_attn.bert_padding import unpad_input as _unpad_input
|
57 |
+
|
58 |
+
flash_attn_func, flash_attn_varlen_func = _flash_attn_func, _flash_attn_varlen_func
|
59 |
+
pad_input, index_first_axis, unpad_input = _pad_input, _index_first_axis, _unpad_input
|
60 |
+
has_flash_attn = True
|
61 |
+
except:
|
62 |
+
has_flash_attn = False
|
63 |
+
|
64 |
+
|
65 |
+
def _import_flash_attn():
|
66 |
+
global flash_attn_func, flash_attn_varlen_func
|
67 |
+
global pad_input, index_first_axis, unpad_input
|
68 |
+
try:
|
69 |
+
from flash_attn import flash_attn_func as _flash_attn_func
|
70 |
+
from flash_attn import \
|
71 |
+
flash_attn_varlen_func as _flash_attn_varlen_func
|
72 |
+
from flash_attn.bert_padding import \
|
73 |
+
index_first_axis as _index_first_axis
|
74 |
+
from flash_attn.bert_padding import pad_input as _pad_input
|
75 |
+
from flash_attn.bert_padding import unpad_input as _unpad_input
|
76 |
+
flash_attn_func, flash_attn_varlen_func = _flash_attn_func, _flash_attn_varlen_func
|
77 |
+
pad_input, index_first_axis, unpad_input = _pad_input, _index_first_axis, _unpad_input
|
78 |
+
except ImportError:
|
79 |
+
raise ImportError('flash_attn is not installed.')
|
80 |
+
|
81 |
+
|
82 |
+
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
|
83 |
+
def _get_unpad_data(attention_mask):
|
84 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
85 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
86 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
87 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
|
88 |
+
return (
|
89 |
+
indices,
|
90 |
+
cu_seqlens,
|
91 |
+
max_seqlen_in_batch,
|
92 |
+
)
|
93 |
+
|
94 |
+
|
95 |
+
# Copied from transformers.models.bart.modeling_bart._make_causal_mask
|
96 |
+
def _make_causal_mask(
|
97 |
+
input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
|
98 |
+
):
|
99 |
+
"""
|
100 |
+
Make causal mask used for bi-directional self-attention.
|
101 |
+
"""
|
102 |
+
bsz, tgt_len = input_ids_shape
|
103 |
+
mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device)
|
104 |
+
mask_cond = torch.arange(mask.size(-1), device=device)
|
105 |
+
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
|
106 |
+
mask = mask.to(dtype)
|
107 |
+
|
108 |
+
if past_key_values_length > 0:
|
109 |
+
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
|
110 |
+
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
|
111 |
+
|
112 |
+
|
113 |
+
# Copied from transformers.models.bart.modeling_bart._expand_mask
|
114 |
+
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
115 |
+
"""
|
116 |
+
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
|
117 |
+
"""
|
118 |
+
bsz, src_len = mask.size()
|
119 |
+
tgt_len = tgt_len if tgt_len is not None else src_len
|
120 |
+
|
121 |
+
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
|
122 |
+
|
123 |
+
inverted_mask = 1.0 - expanded_mask
|
124 |
+
|
125 |
+
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
|
126 |
+
|
127 |
+
|
128 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->SkyworkLM2
|
129 |
+
class SkyworkLM2RMSNorm(nn.Module):
|
130 |
+
def __init__(self, hidden_size, eps=1e-6):
|
131 |
+
"""
|
132 |
+
SkyworkLM2RMSNorm is equivalent to T5LayerNorm
|
133 |
+
"""
|
134 |
+
super().__init__()
|
135 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
136 |
+
self.variance_epsilon = eps
|
137 |
+
|
138 |
+
def forward(self, hidden_states):
|
139 |
+
input_dtype = hidden_states.dtype
|
140 |
+
hidden_states = hidden_states.to(torch.float32)
|
141 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
142 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
143 |
+
return self.weight * hidden_states.to(input_dtype)
|
144 |
+
|
145 |
+
|
146 |
+
# Copied from transformers.model.llama.modeling_llama.LlamaRotaryEmbedding with Llama->SkyworkLM2
|
147 |
+
class SkyworkLM2RotaryEmbedding(nn.Module):
|
148 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
149 |
+
super().__init__()
|
150 |
+
|
151 |
+
self.dim = dim
|
152 |
+
self.max_position_embeddings = max_position_embeddings
|
153 |
+
self.base = base
|
154 |
+
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
|
155 |
+
self.register_buffer('inv_freq', inv_freq, persistent=False)
|
156 |
+
|
157 |
+
# Build here to make `torch.jit.trace` work.
|
158 |
+
self._set_cos_sin_cache(
|
159 |
+
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
|
160 |
+
)
|
161 |
+
|
162 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
163 |
+
self.max_seq_len_cached = seq_len
|
164 |
+
t = torch.arange(self.max_seq_len_cached, device=device).to(dtype=self.inv_freq.dtype)
|
165 |
+
|
166 |
+
freqs = torch.einsum('i,j->ij', t, self.inv_freq)
|
167 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
168 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
169 |
+
self.register_buffer('cos_cached', emb.cos().to(dtype), persistent=False)
|
170 |
+
self.register_buffer('sin_cached', emb.sin().to(dtype), persistent=False)
|
171 |
+
|
172 |
+
def forward(self, x, seq_len=None):
|
173 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
174 |
+
if seq_len > self.max_seq_len_cached:
|
175 |
+
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=torch.float32)
|
176 |
+
|
177 |
+
return (
|
178 |
+
self.cos_cached[:seq_len].to(dtype=x.dtype),
|
179 |
+
self.sin_cached[:seq_len].to(dtype=x.dtype),
|
180 |
+
)
|
181 |
+
|
182 |
+
|
183 |
+
# Copied from transformers.model.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding with Llama->SkyworkLM2
|
184 |
+
class SkyworkLM2LinearScalingRotaryEmbedding(SkyworkLM2RotaryEmbedding):
|
185 |
+
|
186 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
|
187 |
+
self.scaling_factor = scaling_factor
|
188 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
189 |
+
|
190 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
191 |
+
self.max_seq_len_cached = seq_len
|
192 |
+
t = torch.arange(self.max_seq_len_cached, device=device).to(dtype=self.inv_freq.dtype)
|
193 |
+
t = t / self.scaling_factor
|
194 |
+
|
195 |
+
freqs = torch.einsum('i,j->ij', t, self.inv_freq)
|
196 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
197 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
198 |
+
self.register_buffer('cos_cached', emb.cos().to(dtype), persistent=False)
|
199 |
+
self.register_buffer('sin_cached', emb.sin().to(dtype), persistent=False)
|
200 |
+
|
201 |
+
|
202 |
+
# Copied from transformers.model.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->SkyworkLM2
|
203 |
+
class SkyworkLM2DynamicNTKScalingRotaryEmbedding(SkyworkLM2RotaryEmbedding):
|
204 |
+
|
205 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
|
206 |
+
self.scaling_factor = scaling_factor
|
207 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
208 |
+
|
209 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
210 |
+
self.max_seq_len_cached = seq_len
|
211 |
+
|
212 |
+
if seq_len > self.max_position_embeddings:
|
213 |
+
base = self.base * (
|
214 |
+
(self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
|
215 |
+
) ** (self.dim / (self.dim - 2))
|
216 |
+
inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
|
217 |
+
self.register_buffer('inv_freq', inv_freq, persistent=False)
|
218 |
+
|
219 |
+
t = torch.arange(self.max_seq_len_cached, device=device).to(dtype=self.inv_freq.dtype)
|
220 |
+
|
221 |
+
freqs = torch.einsum('i,j->ij', t, self.inv_freq)
|
222 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
223 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
224 |
+
self.register_buffer('cos_cached', emb.cos().to(dtype), persistent=False)
|
225 |
+
self.register_buffer('sin_cached', emb.sin().to(dtype), persistent=False)
|
226 |
+
|
227 |
+
|
228 |
+
# Copied from transformers.model.llama.modeling_llama.rotate_half
|
229 |
+
def rotate_half(x):
|
230 |
+
"""Rotates half the hidden dims of the input."""
|
231 |
+
x1 = x[..., : x.shape[-1] // 2]
|
232 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
233 |
+
return torch.cat((-x2, x1), dim=-1)
|
234 |
+
|
235 |
+
|
236 |
+
# Copied from transformers.model.llama.modeling_llama.apply_rotary_pos_emb
|
237 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
|
238 |
+
"""Applies Rotary Position Embedding to the query and key tensors."""
|
239 |
+
cos = cos[position_ids].unsqueeze(unsqueeze_dim)
|
240 |
+
sin = sin[position_ids].unsqueeze(unsqueeze_dim)
|
241 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
242 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
243 |
+
return q_embed, k_embed
|
244 |
+
|
245 |
+
|
246 |
+
class SkyworkLM2MLP(nn.Module):
|
247 |
+
def __init__(self, config):
|
248 |
+
super().__init__()
|
249 |
+
self.config = config
|
250 |
+
self.hidden_size = config.hidden_size
|
251 |
+
self.intermediate_size = config.intermediate_size
|
252 |
+
self.w1 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
253 |
+
self.w3 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
254 |
+
self.w2 = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
255 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
256 |
+
|
257 |
+
def forward(self, x):
|
258 |
+
down_proj = self.w2(self.act_fn(self.w1(x)) * self.w3(x))
|
259 |
+
|
260 |
+
return down_proj
|
261 |
+
|
262 |
+
|
263 |
+
# Copied from transformers.model.llama.modeling_llama.repeat_kv
|
264 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
265 |
+
"""
|
266 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
267 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
268 |
+
"""
|
269 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
270 |
+
if n_rep == 1:
|
271 |
+
return hidden_states
|
272 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
273 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
274 |
+
|
275 |
+
|
276 |
+
# Modified from transformers.model.llama.modeling_llama.LlamaAttention
|
277 |
+
class SkyworkLM2Attention(nn.Module):
|
278 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
279 |
+
|
280 |
+
def __init__(self, config: SkyworkLM2Config):
|
281 |
+
super().__init__()
|
282 |
+
self.config = config
|
283 |
+
self.hidden_size = config.hidden_size
|
284 |
+
self.num_heads = config.num_attention_heads
|
285 |
+
self.head_dim = self.hidden_size // self.num_heads
|
286 |
+
self.num_key_value_heads = config.num_key_value_heads
|
287 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
288 |
+
self.max_position_embeddings = config.max_position_embeddings
|
289 |
+
self.is_causal = True
|
290 |
+
|
291 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
292 |
+
raise ValueError(
|
293 |
+
f'hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}'
|
294 |
+
f' and `num_heads`: {self.num_heads}).'
|
295 |
+
)
|
296 |
+
|
297 |
+
self.wqkv = nn.Linear(
|
298 |
+
self.hidden_size,
|
299 |
+
(self.num_heads + 2 * self.num_key_value_heads) * self.head_dim,
|
300 |
+
bias=config.bias,
|
301 |
+
)
|
302 |
+
|
303 |
+
self.wo = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.bias)
|
304 |
+
self._init_rope()
|
305 |
+
|
306 |
+
def _init_rope(self):
|
307 |
+
if self.config.rope_scaling is None:
|
308 |
+
self.rotary_emb = SkyworkLM2RotaryEmbedding(
|
309 |
+
self.head_dim,
|
310 |
+
max_position_embeddings=self.max_position_embeddings,
|
311 |
+
base=self.config.rope_theta,
|
312 |
+
)
|
313 |
+
else:
|
314 |
+
scaling_type = self.config.rope_scaling['type']
|
315 |
+
scaling_factor = self.config.rope_scaling['factor']
|
316 |
+
if scaling_type == 'dynamic':
|
317 |
+
self.rotary_emb = SkyworkLM2DynamicNTKScalingRotaryEmbedding(
|
318 |
+
self.head_dim,
|
319 |
+
max_position_embeddings=self.max_position_embeddings,
|
320 |
+
base=self.config.rope_theta,
|
321 |
+
scaling_factor=scaling_factor,
|
322 |
+
)
|
323 |
+
elif scaling_type == 'linear':
|
324 |
+
self.rotary_emb = SkyworkLM2LinearScalingRotaryEmbedding(
|
325 |
+
self.head_dim,
|
326 |
+
max_position_embeddings=self.max_position_embeddings,
|
327 |
+
base=self.config.rope_theta,
|
328 |
+
scaling_factor=scaling_factor,
|
329 |
+
)
|
330 |
+
else:
|
331 |
+
raise ValueError("Currently we only support rotary embedding's type being 'dynamic' or 'linear'.")
|
332 |
+
return self.rotary_emb
|
333 |
+
|
334 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
335 |
+
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
336 |
+
|
337 |
+
def forward(
|
338 |
+
self,
|
339 |
+
hidden_states: torch.Tensor,
|
340 |
+
attention_mask: Optional[torch.Tensor] = None,
|
341 |
+
position_ids: Optional[torch.LongTensor] = None,
|
342 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
343 |
+
output_attentions: bool = False,
|
344 |
+
use_cache: bool = False,
|
345 |
+
**kwargs,
|
346 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
347 |
+
if 'padding_mask' in kwargs:
|
348 |
+
warnings.warn(
|
349 |
+
'Passing `padding_mask` is deprecated and will be removed in v4.37. '
|
350 |
+
'Please make sure use `attention_mask` instead.`'
|
351 |
+
)
|
352 |
+
|
353 |
+
bsz, q_len, _ = hidden_states.size()
|
354 |
+
|
355 |
+
qkv_states = self.wqkv(hidden_states)
|
356 |
+
|
357 |
+
qkv_states = rearrange(
|
358 |
+
qkv_states,
|
359 |
+
'b q (h gs d) -> b q h gs d',
|
360 |
+
gs=2 + self.num_key_value_groups,
|
361 |
+
d=self.head_dim,
|
362 |
+
)
|
363 |
+
|
364 |
+
query_states = qkv_states[..., : self.num_key_value_groups, :]
|
365 |
+
query_states = rearrange(query_states, 'b q h gs d -> b q (h gs) d')
|
366 |
+
key_states = qkv_states[..., -2, :]
|
367 |
+
value_states = qkv_states[..., -1, :]
|
368 |
+
|
369 |
+
query_states = query_states.transpose(1, 2)
|
370 |
+
key_states = key_states.transpose(1, 2)
|
371 |
+
value_states = value_states.transpose(1, 2)
|
372 |
+
|
373 |
+
kv_seq_len = key_states.shape[-2]
|
374 |
+
if past_key_value is not None:
|
375 |
+
kv_seq_len += past_key_value[0].shape[-2]
|
376 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
377 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
378 |
+
|
379 |
+
if past_key_value is not None:
|
380 |
+
# reuse k, v, self_attention
|
381 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
382 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
383 |
+
|
384 |
+
past_key_value = (key_states, value_states) if use_cache else None
|
385 |
+
|
386 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
387 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
388 |
+
|
389 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
390 |
+
|
391 |
+
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
392 |
+
raise ValueError(
|
393 |
+
f'Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is'
|
394 |
+
f' {attn_weights.size()}'
|
395 |
+
)
|
396 |
+
|
397 |
+
if attention_mask is not None:
|
398 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
399 |
+
raise ValueError(
|
400 |
+
f'Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}'
|
401 |
+
)
|
402 |
+
attn_weights = attn_weights + attention_mask
|
403 |
+
|
404 |
+
# upcast attention to fp32
|
405 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
406 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
407 |
+
|
408 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
409 |
+
raise ValueError(
|
410 |
+
f'`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is'
|
411 |
+
f' {attn_output.size()}'
|
412 |
+
)
|
413 |
+
|
414 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
415 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
416 |
+
|
417 |
+
attn_output = self.wo(attn_output)
|
418 |
+
|
419 |
+
if not output_attentions:
|
420 |
+
attn_weights = None
|
421 |
+
|
422 |
+
return attn_output, attn_weights, past_key_value
|
423 |
+
|
424 |
+
|
425 |
+
# Modified from transformers.model.llama.modeling_llama.SkyworkLM2FlashAttention2
|
426 |
+
class SkyworkLM2FlashAttention2(SkyworkLM2Attention):
|
427 |
+
|
428 |
+
def forward(
|
429 |
+
self,
|
430 |
+
hidden_states: torch.Tensor,
|
431 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
432 |
+
position_ids: Optional[torch.LongTensor] = None,
|
433 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
434 |
+
output_attentions: bool = False,
|
435 |
+
use_cache: bool = False,
|
436 |
+
**kwargs,
|
437 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
438 |
+
if 'padding_mask' in kwargs:
|
439 |
+
warnings.warn(
|
440 |
+
'Passing `padding_mask` is deprecated and will be removed in v4.37. '
|
441 |
+
'Please make sure use `attention_mask` instead.`'
|
442 |
+
)
|
443 |
+
|
444 |
+
# overwrite attention_mask with padding_mask
|
445 |
+
attention_mask = kwargs.pop('padding_mask')
|
446 |
+
|
447 |
+
output_attentions = False
|
448 |
+
|
449 |
+
bsz, q_len, _ = hidden_states.size()
|
450 |
+
|
451 |
+
qkv_states = self.wqkv(hidden_states)
|
452 |
+
|
453 |
+
qkv_states = rearrange(
|
454 |
+
qkv_states,
|
455 |
+
'b q (h gs d) -> b q h gs d',
|
456 |
+
gs=2 + self.num_key_value_groups,
|
457 |
+
d=self.head_dim,
|
458 |
+
)
|
459 |
+
|
460 |
+
query_states = qkv_states[..., : self.num_key_value_groups, :]
|
461 |
+
query_states = rearrange(query_states, 'b q h gs d -> b q (h gs) d')
|
462 |
+
key_states = qkv_states[..., -2, :]
|
463 |
+
value_states = qkv_states[..., -1, :]
|
464 |
+
|
465 |
+
query_states = query_states.transpose(1, 2)
|
466 |
+
key_states = key_states.transpose(1, 2)
|
467 |
+
value_states = value_states.transpose(1, 2)
|
468 |
+
|
469 |
+
kv_seq_len = key_states.shape[-2]
|
470 |
+
if past_key_value is not None:
|
471 |
+
kv_seq_len += past_key_value[0].shape[-2]
|
472 |
+
|
473 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
474 |
+
|
475 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
476 |
+
|
477 |
+
if past_key_value is not None:
|
478 |
+
# reuse k, v, self_attention
|
479 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
480 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
481 |
+
|
482 |
+
past_key_value = (key_states, value_states) if use_cache else None
|
483 |
+
|
484 |
+
query_states = query_states.transpose(1, 2)
|
485 |
+
key_states = key_states.transpose(1, 2)
|
486 |
+
value_states = value_states.transpose(1, 2)
|
487 |
+
|
488 |
+
attn_output = self._flash_attention_forward(
|
489 |
+
query_states, key_states, value_states, attention_mask, q_len
|
490 |
+
)
|
491 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
|
492 |
+
attn_output = self.wo(attn_output)
|
493 |
+
|
494 |
+
if not output_attentions:
|
495 |
+
attn_weights = None
|
496 |
+
|
497 |
+
return attn_output, attn_weights, past_key_value
|
498 |
+
|
499 |
+
def _flash_attention_forward(
|
500 |
+
self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
|
501 |
+
):
|
502 |
+
"""
|
503 |
+
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
504 |
+
first unpad the input, then computes the attention scores and pad the final attention scores.
|
505 |
+
|
506 |
+
Args:
|
507 |
+
query_states (`torch.Tensor`):
|
508 |
+
Input query states to be passed to Flash Attention API
|
509 |
+
key_states (`torch.Tensor`):
|
510 |
+
Input key states to be passed to Flash Attention API
|
511 |
+
value_states (`torch.Tensor`):
|
512 |
+
Input value states to be passed to Flash Attention API
|
513 |
+
attention_mask (`torch.Tensor`):
|
514 |
+
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
515 |
+
position of padding tokens and 1 for the position of non-padding tokens.
|
516 |
+
dropout (`int`, *optional*):
|
517 |
+
Attention dropout
|
518 |
+
softmax_scale (`float`, *optional*):
|
519 |
+
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
520 |
+
"""
|
521 |
+
# Contains at least one padding token in the sequence
|
522 |
+
causal = self.is_causal and query_length != 1
|
523 |
+
if attention_mask is not None:
|
524 |
+
batch_size = query_states.shape[0]
|
525 |
+
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._unpad_input(
|
526 |
+
query_states, key_states, value_states, attention_mask, query_length
|
527 |
+
)
|
528 |
+
|
529 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
530 |
+
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
531 |
+
|
532 |
+
attn_output_unpad = flash_attn_varlen_func(
|
533 |
+
query_states,
|
534 |
+
key_states,
|
535 |
+
value_states,
|
536 |
+
cu_seqlens_q=cu_seqlens_q,
|
537 |
+
cu_seqlens_k=cu_seqlens_k,
|
538 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
539 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
540 |
+
dropout_p=dropout,
|
541 |
+
softmax_scale=softmax_scale,
|
542 |
+
causal=causal,
|
543 |
+
)
|
544 |
+
|
545 |
+
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
|
546 |
+
else:
|
547 |
+
attn_output = flash_attn_func(
|
548 |
+
query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
|
549 |
+
)
|
550 |
+
|
551 |
+
return attn_output
|
552 |
+
|
553 |
+
def _unpad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
554 |
+
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
555 |
+
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
|
556 |
+
|
557 |
+
key_layer = index_first_axis(
|
558 |
+
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
559 |
+
)
|
560 |
+
value_layer = index_first_axis(
|
561 |
+
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
562 |
+
)
|
563 |
+
|
564 |
+
if query_length == kv_seq_len:
|
565 |
+
query_layer = index_first_axis(
|
566 |
+
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
|
567 |
+
)
|
568 |
+
cu_seqlens_q = cu_seqlens_k
|
569 |
+
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
570 |
+
indices_q = indices_k
|
571 |
+
elif query_length == 1:
|
572 |
+
max_seqlen_in_batch_q = 1
|
573 |
+
cu_seqlens_q = torch.arange(
|
574 |
+
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
575 |
+
) # There is a memcpy here, that is very bad.
|
576 |
+
indices_q = cu_seqlens_q[:-1]
|
577 |
+
query_layer = query_layer.squeeze(1)
|
578 |
+
else:
|
579 |
+
# The -q_len: slice assumes left padding.
|
580 |
+
attention_mask = attention_mask[:, -query_length:]
|
581 |
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
|
582 |
+
|
583 |
+
return (
|
584 |
+
query_layer,
|
585 |
+
key_layer,
|
586 |
+
value_layer,
|
587 |
+
indices_q.to(torch.int64),
|
588 |
+
(cu_seqlens_q, cu_seqlens_k),
|
589 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
590 |
+
)
|
591 |
+
|
592 |
+
|
593 |
+
INTERNLM2_ATTENTION_CLASSES = {
|
594 |
+
'eager': SkyworkLM2Attention,
|
595 |
+
'flash_attention_2': SkyworkLM2FlashAttention2,
|
596 |
+
}
|
597 |
+
|
598 |
+
|
599 |
+
# Modified from transformers.model.llama.modeling_llama.LlamaDecoderLayer
|
600 |
+
class SkyworkLM2DecoderLayer(nn.Module):
|
601 |
+
def __init__(self, config: SkyworkLM2Config):
|
602 |
+
super().__init__()
|
603 |
+
self.hidden_size = config.hidden_size
|
604 |
+
|
605 |
+
self.attention = INTERNLM2_ATTENTION_CLASSES[config.attn_implementation](config=config)
|
606 |
+
|
607 |
+
self.feed_forward = SkyworkLM2MLP(config)
|
608 |
+
self.attention_norm = SkyworkLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
609 |
+
self.ffn_norm = SkyworkLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
610 |
+
|
611 |
+
def forward(
|
612 |
+
self,
|
613 |
+
hidden_states: torch.Tensor,
|
614 |
+
attention_mask: Optional[torch.Tensor] = None,
|
615 |
+
position_ids: Optional[torch.LongTensor] = None,
|
616 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
617 |
+
output_attentions: Optional[bool] = False,
|
618 |
+
use_cache: Optional[bool] = False,
|
619 |
+
**kwargs,
|
620 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
621 |
+
"""
|
622 |
+
Args:
|
623 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
624 |
+
attention_mask (`torch.FloatTensor`, *optional*):
|
625 |
+
attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
|
626 |
+
query_sequence_length, key_sequence_length)` if default attention is used.
|
627 |
+
output_attentions (`bool`, *optional*):
|
628 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
629 |
+
returned tensors for more detail.
|
630 |
+
use_cache (`bool`, *optional*):
|
631 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
632 |
+
(see `past_key_values`).
|
633 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
634 |
+
"""
|
635 |
+
if 'padding_mask' in kwargs:
|
636 |
+
warnings.warn(
|
637 |
+
'Passing `padding_mask` is deprecated and will be removed in v4.37. '
|
638 |
+
'Please make sure use `attention_mask` instead.`'
|
639 |
+
)
|
640 |
+
|
641 |
+
residual = hidden_states
|
642 |
+
|
643 |
+
hidden_states = self.attention_norm(hidden_states)
|
644 |
+
|
645 |
+
# Self Attention
|
646 |
+
hidden_states, self_attn_weights, present_key_value = self.attention(
|
647 |
+
hidden_states=hidden_states,
|
648 |
+
attention_mask=attention_mask,
|
649 |
+
position_ids=position_ids,
|
650 |
+
past_key_value=past_key_value,
|
651 |
+
output_attentions=output_attentions,
|
652 |
+
use_cache=use_cache,
|
653 |
+
**kwargs,
|
654 |
+
)
|
655 |
+
hidden_states = residual + hidden_states
|
656 |
+
|
657 |
+
# Fully Connected
|
658 |
+
residual = hidden_states
|
659 |
+
hidden_states = self.ffn_norm(hidden_states)
|
660 |
+
hidden_states = self.feed_forward(hidden_states)
|
661 |
+
hidden_states = residual + hidden_states
|
662 |
+
|
663 |
+
outputs = (hidden_states,)
|
664 |
+
|
665 |
+
if output_attentions:
|
666 |
+
outputs += (self_attn_weights,)
|
667 |
+
|
668 |
+
if use_cache:
|
669 |
+
outputs += (present_key_value,)
|
670 |
+
|
671 |
+
return outputs
|
672 |
+
|
673 |
+
|
674 |
+
SkyworkLM2_START_DOCSTRING = r"""
|
675 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
676 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
677 |
+
etc.)
|
678 |
+
|
679 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
680 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
681 |
+
and behavior.
|
682 |
+
|
683 |
+
Parameters:
|
684 |
+
config ([`SkyworkLM2Config`]):
|
685 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
686 |
+
load the weights associated with the model, only the configuration. Check out the
|
687 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
688 |
+
"""
|
689 |
+
|
690 |
+
|
691 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaPreTrainedModel with Llama->SkyworkLM2
|
692 |
+
@add_start_docstrings(
|
693 |
+
'The bare SkyworkLM2 Model outputting raw hidden-states without any specific head on top.',
|
694 |
+
SkyworkLM2_START_DOCSTRING,
|
695 |
+
)
|
696 |
+
class SkyworkLM2PreTrainedModel(PreTrainedModel):
|
697 |
+
config_class = SkyworkLM2Config
|
698 |
+
base_model_prefix = 'model'
|
699 |
+
supports_gradient_checkpointing = True
|
700 |
+
_no_split_modules = ['SkyworkLM2DecoderLayer']
|
701 |
+
_skip_keys_device_placement = 'past_key_values'
|
702 |
+
_supports_flash_attn_2 = True
|
703 |
+
|
704 |
+
def _init_weights(self, module):
|
705 |
+
std = self.config.initializer_range
|
706 |
+
if isinstance(module, nn.Linear):
|
707 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
708 |
+
if module.bias is not None:
|
709 |
+
module.bias.data.zero_()
|
710 |
+
elif isinstance(module, nn.Embedding):
|
711 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
712 |
+
if module.padding_idx is not None:
|
713 |
+
module.weight.data[module.padding_idx].zero_()
|
714 |
+
|
715 |
+
|
716 |
+
SkyworkLM2_INPUTS_DOCSTRING = r"""
|
717 |
+
Args:
|
718 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
719 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
720 |
+
it.
|
721 |
+
|
722 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
723 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
724 |
+
|
725 |
+
[What are input IDs?](../glossary#input-ids)
|
726 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
727 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
728 |
+
|
729 |
+
- 1 for tokens that are **not masked**,
|
730 |
+
- 0 for tokens that are **masked**.
|
731 |
+
|
732 |
+
[What are attention masks?](../glossary#attention-mask)
|
733 |
+
|
734 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
735 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
736 |
+
|
737 |
+
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
|
738 |
+
`past_key_values`).
|
739 |
+
|
740 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
741 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
742 |
+
information on the default strategy.
|
743 |
+
|
744 |
+
- 1 indicates the head is **not masked**,
|
745 |
+
- 0 indicates the head is **masked**.
|
746 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
747 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
748 |
+
config.n_positions - 1]`.
|
749 |
+
|
750 |
+
[What are position IDs?](../glossary#position-ids)
|
751 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or
|
752 |
+
when `config.use_cache=True`):
|
753 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
754 |
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
|
755 |
+
`(batch_size, num_heads, decoder_sequence_length, embed_size_per_head)`.
|
756 |
+
|
757 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
758 |
+
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
|
759 |
+
|
760 |
+
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
761 |
+
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
762 |
+
of shape `(batch_size, sequence_length)`.
|
763 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
764 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
765 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
766 |
+
model's skywork embedding lookup matrix.
|
767 |
+
use_cache (`bool`, *optional*):
|
768 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
769 |
+
`past_key_values`).
|
770 |
+
output_attentions (`bool`, *optional*):
|
771 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
772 |
+
tensors for more detail.
|
773 |
+
output_hidden_states (`bool`, *optional*):
|
774 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
775 |
+
more detail.
|
776 |
+
return_dict (`bool`, *optional*):
|
777 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
778 |
+
"""
|
779 |
+
|
780 |
+
|
781 |
+
# Modified from transformers.model.llama.modeling_llama.LlamaModel
|
782 |
+
@add_start_docstrings(
|
783 |
+
'The bare SkyworkLM2 Model outputting raw hidden-states without any specific head on top.',
|
784 |
+
SkyworkLM2_START_DOCSTRING,
|
785 |
+
)
|
786 |
+
class SkyworkLM2Model(SkyworkLM2PreTrainedModel):
|
787 |
+
"""
|
788 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`SkyworkLM2DecoderLayer`]
|
789 |
+
|
790 |
+
Args:
|
791 |
+
config: SkyworkLM2Config
|
792 |
+
"""
|
793 |
+
|
794 |
+
_auto_class = 'AutoModel'
|
795 |
+
|
796 |
+
def __init__(self, config: SkyworkLM2Config):
|
797 |
+
super().__init__(config)
|
798 |
+
self.padding_idx = config.pad_token_id
|
799 |
+
self.vocab_size = config.vocab_size
|
800 |
+
self.config = config
|
801 |
+
if not has_flash_attn:
|
802 |
+
self.config.attn_implementation = 'eager'
|
803 |
+
print('Warning: Flash attention is not available, using eager attention instead.')
|
804 |
+
|
805 |
+
self.tok_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
806 |
+
|
807 |
+
self.layers = nn.ModuleList([SkyworkLM2DecoderLayer(config) for _ in range(config.num_hidden_layers)])
|
808 |
+
self.norm = SkyworkLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
809 |
+
|
810 |
+
self.gradient_checkpointing = False
|
811 |
+
# Initialize weights and apply final processing
|
812 |
+
self.post_init()
|
813 |
+
|
814 |
+
def get_input_embeddings(self):
|
815 |
+
return self.tok_embeddings
|
816 |
+
|
817 |
+
def set_input_embeddings(self, value):
|
818 |
+
self.tok_embeddings = value
|
819 |
+
|
820 |
+
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
|
821 |
+
# create causal mask
|
822 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
823 |
+
combined_attention_mask = None
|
824 |
+
if input_shape[-1] > 1:
|
825 |
+
combined_attention_mask = _make_causal_mask(
|
826 |
+
input_shape,
|
827 |
+
inputs_embeds.dtype,
|
828 |
+
device=inputs_embeds.device,
|
829 |
+
past_key_values_length=past_key_values_length,
|
830 |
+
)
|
831 |
+
|
832 |
+
if attention_mask is not None:
|
833 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
834 |
+
expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
|
835 |
+
inputs_embeds.device
|
836 |
+
)
|
837 |
+
combined_attention_mask = (
|
838 |
+
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
|
839 |
+
)
|
840 |
+
|
841 |
+
return combined_attention_mask
|
842 |
+
|
843 |
+
@add_start_docstrings_to_model_forward(SkyworkLM2_INPUTS_DOCSTRING)
|
844 |
+
def forward(
|
845 |
+
self,
|
846 |
+
input_ids: torch.LongTensor = None,
|
847 |
+
attention_mask: Optional[torch.Tensor] = None,
|
848 |
+
position_ids: Optional[torch.LongTensor] = None,
|
849 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
850 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
851 |
+
use_cache: Optional[bool] = None,
|
852 |
+
output_attentions: Optional[bool] = None,
|
853 |
+
output_hidden_states: Optional[bool] = None,
|
854 |
+
return_dict: Optional[bool] = None,
|
855 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
856 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
857 |
+
output_hidden_states = (
|
858 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
859 |
+
)
|
860 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
861 |
+
|
862 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
863 |
+
|
864 |
+
if self.config.attn_implementation == 'flash_attention_2':
|
865 |
+
_import_flash_attn()
|
866 |
+
|
867 |
+
# retrieve input_ids and inputs_embeds
|
868 |
+
if input_ids is not None and inputs_embeds is not None:
|
869 |
+
raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time')
|
870 |
+
elif input_ids is not None:
|
871 |
+
batch_size, seq_length = input_ids.shape[:2]
|
872 |
+
elif inputs_embeds is not None:
|
873 |
+
batch_size, seq_length = inputs_embeds.shape[:2]
|
874 |
+
else:
|
875 |
+
raise ValueError('You have to specify either input_ids or inputs_embeds')
|
876 |
+
|
877 |
+
seq_length_with_past = seq_length
|
878 |
+
past_key_values_length = 0
|
879 |
+
if past_key_values is not None:
|
880 |
+
past_key_values_length = past_key_values[0][0].shape[2]
|
881 |
+
seq_length_with_past = seq_length_with_past + past_key_values_length
|
882 |
+
|
883 |
+
if position_ids is None:
|
884 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
885 |
+
position_ids = torch.arange(
|
886 |
+
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
887 |
+
)
|
888 |
+
position_ids = position_ids.unsqueeze(0)
|
889 |
+
|
890 |
+
if inputs_embeds is None:
|
891 |
+
inputs_embeds = self.tok_embeddings(input_ids)
|
892 |
+
|
893 |
+
if self.config.attn_implementation == 'flash_attention_2':
|
894 |
+
# 2d mask is passed through the layers
|
895 |
+
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
|
896 |
+
else:
|
897 |
+
if attention_mask is None:
|
898 |
+
attention_mask = torch.ones(
|
899 |
+
(batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
|
900 |
+
)
|
901 |
+
attention_mask = self._prepare_decoder_attention_mask(
|
902 |
+
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
|
903 |
+
)
|
904 |
+
|
905 |
+
# embed positions
|
906 |
+
hidden_states = inputs_embeds
|
907 |
+
|
908 |
+
if self.gradient_checkpointing and self.training:
|
909 |
+
if use_cache:
|
910 |
+
logger.warning_once(
|
911 |
+
'`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...'
|
912 |
+
)
|
913 |
+
use_cache = False
|
914 |
+
|
915 |
+
# decoder layers
|
916 |
+
all_hidden_states = () if output_hidden_states else None
|
917 |
+
all_self_attns = () if output_attentions else None
|
918 |
+
next_decoder_cache = () if use_cache else None
|
919 |
+
|
920 |
+
for idx, decoder_layer in enumerate(self.layers):
|
921 |
+
if output_hidden_states:
|
922 |
+
all_hidden_states += (hidden_states,)
|
923 |
+
|
924 |
+
past_key_value = past_key_values[idx] if past_key_values is not None else None
|
925 |
+
|
926 |
+
if self.gradient_checkpointing and self.training:
|
927 |
+
|
928 |
+
def create_custom_forward(module):
|
929 |
+
def custom_forward(*inputs):
|
930 |
+
# None for past_key_value
|
931 |
+
return module(*inputs, output_attentions, None)
|
932 |
+
|
933 |
+
return custom_forward
|
934 |
+
|
935 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
936 |
+
create_custom_forward(decoder_layer),
|
937 |
+
hidden_states,
|
938 |
+
attention_mask,
|
939 |
+
position_ids,
|
940 |
+
None,
|
941 |
+
)
|
942 |
+
else:
|
943 |
+
layer_outputs = decoder_layer(
|
944 |
+
hidden_states,
|
945 |
+
attention_mask=attention_mask,
|
946 |
+
position_ids=position_ids,
|
947 |
+
past_key_value=past_key_value,
|
948 |
+
output_attentions=output_attentions,
|
949 |
+
use_cache=use_cache,
|
950 |
+
)
|
951 |
+
|
952 |
+
hidden_states = layer_outputs[0]
|
953 |
+
|
954 |
+
if use_cache:
|
955 |
+
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
|
956 |
+
|
957 |
+
if output_attentions:
|
958 |
+
all_self_attns += (layer_outputs[1],)
|
959 |
+
|
960 |
+
hidden_states = self.norm(hidden_states)
|
961 |
+
|
962 |
+
# add hidden states from the last decoder layer
|
963 |
+
if output_hidden_states:
|
964 |
+
all_hidden_states += (hidden_states,)
|
965 |
+
|
966 |
+
next_cache = next_decoder_cache if use_cache else None
|
967 |
+
if not return_dict:
|
968 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
969 |
+
return BaseModelOutputWithPast(
|
970 |
+
last_hidden_state=hidden_states,
|
971 |
+
past_key_values=next_cache,
|
972 |
+
hidden_states=all_hidden_states,
|
973 |
+
attentions=all_self_attns,
|
974 |
+
)
|
975 |
+
|
976 |
+
|
977 |
+
# Modified from transformers.model.llama.modeling_llama.LlamaForCausalLM
|
978 |
+
class SkyworkLM2ForCausalLM(SkyworkLM2PreTrainedModel):
|
979 |
+
_auto_class = 'AutoModelForCausalLM'
|
980 |
+
|
981 |
+
_tied_weights_keys = ['output.weight']
|
982 |
+
|
983 |
+
def __init__(self, config):
|
984 |
+
super().__init__(config)
|
985 |
+
self.model = SkyworkLM2Model(config)
|
986 |
+
self.vocab_size = config.vocab_size
|
987 |
+
self.output = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
988 |
+
|
989 |
+
# Initialize weights and apply final processing
|
990 |
+
self.post_init()
|
991 |
+
|
992 |
+
def get_input_embeddings(self):
|
993 |
+
return self.model.tok_embeddings
|
994 |
+
|
995 |
+
def set_input_embeddings(self, value):
|
996 |
+
self.model.tok_embeddings = value
|
997 |
+
|
998 |
+
def get_output_embeddings(self):
|
999 |
+
return self.output
|
1000 |
+
|
1001 |
+
def set_output_embeddings(self, new_embeddings):
|
1002 |
+
self.output = new_embeddings
|
1003 |
+
|
1004 |
+
def set_decoder(self, decoder):
|
1005 |
+
self.model = decoder
|
1006 |
+
|
1007 |
+
def get_decoder(self):
|
1008 |
+
return self.model
|
1009 |
+
|
1010 |
+
@add_start_docstrings_to_model_forward(SkyworkLM2_INPUTS_DOCSTRING)
|
1011 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
1012 |
+
def forward(
|
1013 |
+
self,
|
1014 |
+
input_ids: torch.LongTensor = None,
|
1015 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1016 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1017 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1018 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1019 |
+
labels: Optional[torch.LongTensor] = None,
|
1020 |
+
use_cache: Optional[bool] = None,
|
1021 |
+
output_attentions: Optional[bool] = None,
|
1022 |
+
output_hidden_states: Optional[bool] = None,
|
1023 |
+
return_dict: Optional[bool] = None,
|
1024 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
1025 |
+
r"""
|
1026 |
+
Args:
|
1027 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1028 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
1029 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
1030 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
1031 |
+
|
1032 |
+
Returns:
|
1033 |
+
|
1034 |
+
Example:
|
1035 |
+
|
1036 |
+
```python
|
1037 |
+
>>> from transformers import AutoTokenizer, SkyworkLM2ForCausalLM
|
1038 |
+
|
1039 |
+
>>> model = SkyworkLM2ForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
|
1040 |
+
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
|
1041 |
+
|
1042 |
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
1043 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
1044 |
+
|
1045 |
+
>>> # Generate
|
1046 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
1047 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
1048 |
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
1049 |
+
```"""
|
1050 |
+
|
1051 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1052 |
+
output_hidden_states = (
|
1053 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1054 |
+
)
|
1055 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1056 |
+
|
1057 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
1058 |
+
outputs = self.model(
|
1059 |
+
input_ids=input_ids,
|
1060 |
+
attention_mask=attention_mask,
|
1061 |
+
position_ids=position_ids,
|
1062 |
+
past_key_values=past_key_values,
|
1063 |
+
inputs_embeds=inputs_embeds,
|
1064 |
+
use_cache=use_cache,
|
1065 |
+
output_attentions=output_attentions,
|
1066 |
+
output_hidden_states=output_hidden_states,
|
1067 |
+
return_dict=return_dict,
|
1068 |
+
)
|
1069 |
+
|
1070 |
+
hidden_states = outputs[0]
|
1071 |
+
logits = self.output(hidden_states)
|
1072 |
+
logits = logits.float()
|
1073 |
+
|
1074 |
+
loss = None
|
1075 |
+
if labels is not None:
|
1076 |
+
# Shift so that tokens < n predict n
|
1077 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
1078 |
+
shift_labels = labels[..., 1:].contiguous()
|
1079 |
+
# Flatten the tokens
|
1080 |
+
loss_fct = CrossEntropyLoss()
|
1081 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
1082 |
+
shift_labels = shift_labels.view(-1)
|
1083 |
+
# Enable model parallelism
|
1084 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
1085 |
+
loss = loss_fct(shift_logits, shift_labels)
|
1086 |
+
|
1087 |
+
if not return_dict:
|
1088 |
+
output = (logits,) + outputs[1:]
|
1089 |
+
return (loss,) + output if loss is not None else output
|
1090 |
+
|
1091 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
1092 |
+
output = CausalLMOutputWithPast(
|
1093 |
+
loss=loss,
|
1094 |
+
logits=logits,
|
1095 |
+
past_key_values=outputs.past_key_values,
|
1096 |
+
hidden_states=outputs.hidden_states,
|
1097 |
+
attentions=outputs.attentions,
|
1098 |
+
)
|
1099 |
+
output['logits'] = output['logits'].to(device)
|
1100 |
+
return output
|
1101 |
+
|
1102 |
+
def prepare_inputs_for_generation(
|
1103 |
+
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
1104 |
+
):
|
1105 |
+
if past_key_values is not None:
|
1106 |
+
past_length = past_key_values[0][0].shape[2]
|
1107 |
+
|
1108 |
+
# Some generation methods already pass only the last input ID
|
1109 |
+
if input_ids.shape[1] > past_length:
|
1110 |
+
remove_prefix_length = past_length
|
1111 |
+
else:
|
1112 |
+
# Default to old behavior: keep only final ID
|
1113 |
+
remove_prefix_length = input_ids.shape[1] - 1
|
1114 |
+
|
1115 |
+
input_ids = input_ids[:, remove_prefix_length:]
|
1116 |
+
|
1117 |
+
position_ids = kwargs.get('position_ids', None)
|
1118 |
+
if attention_mask is not None and position_ids is None:
|
1119 |
+
# create position_ids on the fly for batch generation
|
1120 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
1121 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
1122 |
+
if past_key_values:
|
1123 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
1124 |
+
|
1125 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
1126 |
+
if inputs_embeds is not None and past_key_values is None:
|
1127 |
+
model_inputs = {'inputs_embeds': inputs_embeds}
|
1128 |
+
else:
|
1129 |
+
model_inputs = {'input_ids': input_ids}
|
1130 |
+
|
1131 |
+
model_inputs.update(
|
1132 |
+
{
|
1133 |
+
'position_ids': position_ids,
|
1134 |
+
'past_key_values': past_key_values,
|
1135 |
+
'use_cache': kwargs.get('use_cache'),
|
1136 |
+
'attention_mask': attention_mask,
|
1137 |
+
}
|
1138 |
+
)
|
1139 |
+
return model_inputs
|
1140 |
+
|
1141 |
+
@staticmethod
|
1142 |
+
def _reorder_cache(past_key_values, beam_idx):
|
1143 |
+
reordered_past = ()
|
1144 |
+
for layer_past in past_key_values:
|
1145 |
+
reordered_past += (
|
1146 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
1147 |
+
)
|
1148 |
+
return reordered_past
|
1149 |
+
|
1150 |
+
def build_inputs(self, tokenizer, query: str, history: List[Tuple[str, str]] = [], meta_instruction=''): #TODO
|
1151 |
+
if tokenizer.add_bos_token:
|
1152 |
+
prompt = ''
|
1153 |
+
else:
|
1154 |
+
prompt = tokenizer.bos_token
|
1155 |
+
if meta_instruction:
|
1156 |
+
prompt += f"""<|begin▁of▁sentence|>system\n{meta_instruction}<|end▁of▁sentence|>\n"""
|
1157 |
+
for record in history:
|
1158 |
+
prompt += f"""<|begin▁of▁sentence��>user\n{record[0]}<|end▁of▁sentence|>\n<|begin▁of▁sentence|>assistant\n{record[1]}<|end▁of▁sentence|>\n"""
|
1159 |
+
prompt += f"""<|begin▁of▁sentence|>user\n{query}<|end▁of▁sentence|>\n<|begin▁of▁sentence|>assistant\n"""
|
1160 |
+
return tokenizer([prompt], return_tensors='pt')
|
1161 |
+
|
1162 |
+
@torch.no_grad()
|
1163 |
+
def chat(
|
1164 |
+
self,
|
1165 |
+
tokenizer,
|
1166 |
+
query: str,
|
1167 |
+
history: List[Tuple[str, str]] = [],
|
1168 |
+
streamer: Optional[BaseStreamer] = None,
|
1169 |
+
max_new_tokens: int = 1024,
|
1170 |
+
do_sample: bool = True,
|
1171 |
+
temperature: float = 0.8,
|
1172 |
+
top_p: float = 0.8,
|
1173 |
+
meta_instruction: str = '',
|
1174 |
+
**kwargs,
|
1175 |
+
):
|
1176 |
+
inputs = self.build_inputs(tokenizer, query, history, meta_instruction)
|
1177 |
+
inputs = {k: v.to(self.device) for k, v in inputs.items() if torch.is_tensor(v)}
|
1178 |
+
# also add end-of-assistant token in eos token id to avoid unnecessary generation
|
1179 |
+
eos_token_id = [tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids(['<|end▁of▁sentence|>'])[0]]
|
1180 |
+
outputs = self.generate(
|
1181 |
+
**inputs,
|
1182 |
+
streamer=streamer,
|
1183 |
+
max_new_tokens=max_new_tokens,
|
1184 |
+
do_sample=do_sample,
|
1185 |
+
temperature=temperature,
|
1186 |
+
top_p=top_p,
|
1187 |
+
eos_token_id=eos_token_id,
|
1188 |
+
**kwargs,
|
1189 |
+
)
|
1190 |
+
outputs = outputs[0].cpu().tolist()[len(inputs['input_ids'][0]) :]
|
1191 |
+
response = tokenizer.decode(outputs, skip_special_tokens=True)
|
1192 |
+
response = response.split('<|end▁of▁sentence|>')[0]
|
1193 |
+
history = history + [(query, response)]
|
1194 |
+
return response, history
|
1195 |
+
|
1196 |
+
@torch.no_grad()
|
1197 |
+
def stream_chat(
|
1198 |
+
self,
|
1199 |
+
tokenizer,
|
1200 |
+
query: str,
|
1201 |
+
history: List[Tuple[str, str]] = [],
|
1202 |
+
max_new_tokens: int = 1024,
|
1203 |
+
do_sample: bool = True,
|
1204 |
+
temperature: float = 0.8,
|
1205 |
+
top_p: float = 0.8,
|
1206 |
+
**kwargs,
|
1207 |
+
):
|
1208 |
+
"""
|
1209 |
+
Return a generator in format: (response, history)
|
1210 |
+
Eg.
|
1211 |
+
('你好,有什么可以帮助您的吗', [('你好', '你好,有什么可以帮助您的吗')])
|
1212 |
+
('你好,有什么可以帮助您的吗?', [('你好', '你好,有什么可以帮助您的吗?')])
|
1213 |
+
"""
|
1214 |
+
if BaseStreamer is None:
|
1215 |
+
raise ModuleNotFoundError(
|
1216 |
+
'The version of `transformers` is too low. Please make sure '
|
1217 |
+
'that you have installed `transformers>=4.28.0`.'
|
1218 |
+
)
|
1219 |
+
|
1220 |
+
response_queue = queue.Queue(maxsize=20)
|
1221 |
+
|
1222 |
+
class ChatStreamer(BaseStreamer):
|
1223 |
+
def __init__(self, tokenizer) -> None:
|
1224 |
+
super().__init__()
|
1225 |
+
self.tokenizer = tokenizer
|
1226 |
+
self.queue = response_queue
|
1227 |
+
self.query = query
|
1228 |
+
self.history = history
|
1229 |
+
self.response = ''
|
1230 |
+
self.cache = []
|
1231 |
+
self.received_inputs = False
|
1232 |
+
self.queue.put((self.response, history + [(self.query, self.response)]))
|
1233 |
+
|
1234 |
+
def put(self, value):
|
1235 |
+
if len(value.shape) > 1 and value.shape[0] > 1:
|
1236 |
+
raise ValueError('ChatStreamer only supports batch size 1')
|
1237 |
+
elif len(value.shape) > 1:
|
1238 |
+
value = value[0]
|
1239 |
+
|
1240 |
+
if not self.received_inputs:
|
1241 |
+
# The first received value is input_ids, ignore here
|
1242 |
+
self.received_inputs = True
|
1243 |
+
return
|
1244 |
+
|
1245 |
+
self.cache.extend(value.tolist())
|
1246 |
+
token = self.tokenizer.decode(self.cache, skip_special_tokens=True)
|
1247 |
+
if token.strip() != '<|end▁of▁sentence|>':
|
1248 |
+
self.response = self.response + token
|
1249 |
+
history = self.history + [(self.query, self.response)]
|
1250 |
+
self.queue.put((self.response, history))
|
1251 |
+
self.cache = []
|
1252 |
+
else:
|
1253 |
+
self.end()
|
1254 |
+
|
1255 |
+
def end(self):
|
1256 |
+
self.queue.put(None)
|
1257 |
+
|
1258 |
+
def stream_producer():
|
1259 |
+
return self.chat(
|
1260 |
+
tokenizer=tokenizer,
|
1261 |
+
query=query,
|
1262 |
+
streamer=ChatStreamer(tokenizer=tokenizer),
|
1263 |
+
history=history,
|
1264 |
+
max_new_tokens=max_new_tokens,
|
1265 |
+
do_sample=do_sample,
|
1266 |
+
temperature=temperature,
|
1267 |
+
top_p=top_p,
|
1268 |
+
**kwargs,
|
1269 |
+
)
|
1270 |
+
|
1271 |
+
def consumer():
|
1272 |
+
producer = threading.Thread(target=stream_producer)
|
1273 |
+
producer.start()
|
1274 |
+
while True:
|
1275 |
+
res = response_queue.get()
|
1276 |
+
if res is None:
|
1277 |
+
return
|
1278 |
+
yield res
|
1279 |
+
|
1280 |
+
return consumer()
|
1281 |
+
|
1282 |
+
|
1283 |
+
# Copied from transformers.model.llama.modeling_llama.LlamaForSequenceClassification with Llama->SkyworkLM2
|
1284 |
+
@add_start_docstrings(
|
1285 |
+
"""
|
1286 |
+
The SkyworkLM2 Model transformer with a sequence classification head on top (linear layer).
|
1287 |
+
|
1288 |
+
[`SkyworkLM2ForSequenceClassification`] uses the last token in order to do the classification,
|
1289 |
+
as other causal models (e.g. GPT-2) do.
|
1290 |
+
|
1291 |
+
Since it does classification on the last token, it requires to know the position of the last token. If a
|
1292 |
+
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
1293 |
+
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
1294 |
+
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
1295 |
+
each row of the batch).
|
1296 |
+
""",
|
1297 |
+
SkyworkLM2_START_DOCSTRING,
|
1298 |
+
)
|
1299 |
+
class SkyworkLM2ForSequenceClassification(SkyworkLM2PreTrainedModel):
|
1300 |
+
def __init__(self, config):
|
1301 |
+
super().__init__(config)
|
1302 |
+
self.num_labels = config.num_labels
|
1303 |
+
self.model = SkyworkLM2Model(config)
|
1304 |
+
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
1305 |
+
|
1306 |
+
# Initialize weights and apply final processing
|
1307 |
+
self.post_init()
|
1308 |
+
|
1309 |
+
def get_input_embeddings(self):
|
1310 |
+
return self.model.tok_embeddings
|
1311 |
+
|
1312 |
+
def set_input_embeddings(self, value):
|
1313 |
+
self.model.tok_embeddings = value
|
1314 |
+
|
1315 |
+
@add_start_docstrings_to_model_forward(SkyworkLM2_INPUTS_DOCSTRING)
|
1316 |
+
def forward(
|
1317 |
+
self,
|
1318 |
+
input_ids: torch.LongTensor = None,
|
1319 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1320 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1321 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1322 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1323 |
+
labels: Optional[torch.LongTensor] = None,
|
1324 |
+
use_cache: Optional[bool] = None,
|
1325 |
+
output_attentions: Optional[bool] = None,
|
1326 |
+
output_hidden_states: Optional[bool] = None,
|
1327 |
+
return_dict: Optional[bool] = None,
|
1328 |
+
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
1329 |
+
r"""
|
1330 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1331 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1332 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1333 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1334 |
+
"""
|
1335 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1336 |
+
|
1337 |
+
transformer_outputs = self.model(
|
1338 |
+
input_ids,
|
1339 |
+
attention_mask=attention_mask,
|
1340 |
+
position_ids=position_ids,
|
1341 |
+
past_key_values=past_key_values,
|
1342 |
+
inputs_embeds=inputs_embeds,
|
1343 |
+
use_cache=use_cache,
|
1344 |
+
output_attentions=output_attentions,
|
1345 |
+
output_hidden_states=output_hidden_states,
|
1346 |
+
return_dict=return_dict,
|
1347 |
+
)
|
1348 |
+
hidden_states = transformer_outputs[0]
|
1349 |
+
logits = self.score(hidden_states)
|
1350 |
+
|
1351 |
+
if input_ids is not None:
|
1352 |
+
batch_size = input_ids.shape[0]
|
1353 |
+
else:
|
1354 |
+
batch_size = inputs_embeds.shape[0]
|
1355 |
+
|
1356 |
+
if self.config.pad_token_id is None and batch_size != 1:
|
1357 |
+
raise ValueError('Cannot handle batch sizes > 1 if no padding token is defined.')
|
1358 |
+
if self.config.pad_token_id is None:
|
1359 |
+
sequence_lengths = -1
|
1360 |
+
else:
|
1361 |
+
if input_ids is not None:
|
1362 |
+
sequence_lengths = (torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1).to(
|
1363 |
+
logits.device
|
1364 |
+
)
|
1365 |
+
else:
|
1366 |
+
sequence_lengths = -1
|
1367 |
+
|
1368 |
+
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
1369 |
+
|
1370 |
+
loss = None
|
1371 |
+
if labels is not None:
|
1372 |
+
labels = labels.to(logits.device)
|
1373 |
+
if self.config.problem_type is None:
|
1374 |
+
if self.num_labels == 1:
|
1375 |
+
self.config.problem_type = 'regression'
|
1376 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
1377 |
+
self.config.problem_type = 'single_label_classification'
|
1378 |
+
else:
|
1379 |
+
self.config.problem_type = 'multi_label_classification'
|
1380 |
+
|
1381 |
+
if self.config.problem_type == 'regression':
|
1382 |
+
loss_fct = MSELoss()
|
1383 |
+
if self.num_labels == 1:
|
1384 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
1385 |
+
else:
|
1386 |
+
loss = loss_fct(pooled_logits, labels)
|
1387 |
+
elif self.config.problem_type == 'single_label_classification':
|
1388 |
+
loss_fct = CrossEntropyLoss()
|
1389 |
+
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
1390 |
+
elif self.config.problem_type == 'multi_label_classification':
|
1391 |
+
loss_fct = BCEWithLogitsLoss()
|
1392 |
+
loss = loss_fct(pooled_logits, labels)
|
1393 |
+
if not return_dict:
|
1394 |
+
output = (pooled_logits,) + transformer_outputs[1:]
|
1395 |
+
return ((loss,) + output) if loss is not None else output
|
1396 |
+
|
1397 |
+
return SequenceClassifierOutputWithPast(
|
1398 |
+
loss=loss,
|
1399 |
+
logits=pooled_logits,
|
1400 |
+
past_key_values=transformer_outputs.past_key_values,
|
1401 |
+
hidden_states=transformer_outputs.hidden_states,
|
1402 |
+
attentions=transformer_outputs.attentions,
|
1403 |
+
)
|
modeling_skywork_vit.py
ADDED
@@ -0,0 +1,424 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Optional, Tuple, Union
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn.functional as F
|
5 |
+
import torch.utils.checkpoint
|
6 |
+
from einops import rearrange
|
7 |
+
from timm.models.layers import DropPath
|
8 |
+
from torch import nn
|
9 |
+
from transformers.activations import ACT2FN
|
10 |
+
from transformers.modeling_outputs import (BaseModelOutput,
|
11 |
+
BaseModelOutputWithPooling)
|
12 |
+
from transformers.modeling_utils import PreTrainedModel
|
13 |
+
from transformers.utils import logging
|
14 |
+
|
15 |
+
from .configuration_skywork_vit import SkyworkVisionConfig
|
16 |
+
|
17 |
+
try:
|
18 |
+
from flash_attn.bert_padding import pad_input, unpad_input
|
19 |
+
from flash_attn.flash_attn_interface import \
|
20 |
+
flash_attn_varlen_qkvpacked_func
|
21 |
+
has_flash_attn = True
|
22 |
+
except:
|
23 |
+
print('FlashAttention2 is not installed.')
|
24 |
+
has_flash_attn = False
|
25 |
+
|
26 |
+
logger = logging.get_logger(__name__)
|
27 |
+
|
28 |
+
|
29 |
+
class FlashAttention(nn.Module):
|
30 |
+
"""Implement the scaled dot product attention with softmax.
|
31 |
+
Arguments
|
32 |
+
---------
|
33 |
+
softmax_scale: The temperature to use for the softmax attention.
|
34 |
+
(default: 1/sqrt(d_keys) where d_keys is computed at
|
35 |
+
runtime)
|
36 |
+
attention_dropout: The dropout rate to apply to the attention
|
37 |
+
(default: 0.0)
|
38 |
+
"""
|
39 |
+
|
40 |
+
def __init__(self, softmax_scale=None, attention_dropout=0.0, device=None, dtype=None):
|
41 |
+
super().__init__()
|
42 |
+
self.softmax_scale = softmax_scale
|
43 |
+
self.dropout_p = attention_dropout
|
44 |
+
|
45 |
+
def forward(self, qkv, key_padding_mask=None, causal=False, cu_seqlens=None,
|
46 |
+
max_s=None, need_weights=False):
|
47 |
+
"""Implements the multihead softmax attention.
|
48 |
+
Arguments
|
49 |
+
---------
|
50 |
+
qkv: The tensor containing the query, key, and value. (B, S, 3, H, D) if key_padding_mask is None
|
51 |
+
if unpadded: (nnz, 3, h, d)
|
52 |
+
key_padding_mask: a bool tensor of shape (B, S)
|
53 |
+
"""
|
54 |
+
assert not need_weights
|
55 |
+
assert qkv.dtype in [torch.float16, torch.bfloat16]
|
56 |
+
assert qkv.is_cuda
|
57 |
+
|
58 |
+
if cu_seqlens is None:
|
59 |
+
batch_size = qkv.shape[0]
|
60 |
+
seqlen = qkv.shape[1]
|
61 |
+
if key_padding_mask is None:
|
62 |
+
qkv = rearrange(qkv, 'b s ... -> (b s) ...')
|
63 |
+
max_s = seqlen
|
64 |
+
cu_seqlens = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32,
|
65 |
+
device=qkv.device)
|
66 |
+
output = flash_attn_varlen_qkvpacked_func(
|
67 |
+
qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
|
68 |
+
softmax_scale=self.softmax_scale, causal=causal
|
69 |
+
)
|
70 |
+
output = rearrange(output, '(b s) ... -> b s ...', b=batch_size)
|
71 |
+
else:
|
72 |
+
nheads = qkv.shape[-2]
|
73 |
+
x = rearrange(qkv, 'b s three h d -> b s (three h d)')
|
74 |
+
x_unpad, indices, cu_seqlens, max_s = unpad_input(x, key_padding_mask)
|
75 |
+
x_unpad = rearrange(x_unpad, 'nnz (three h d) -> nnz three h d', three=3, h=nheads)
|
76 |
+
output_unpad = flash_attn_varlen_qkvpacked_func(
|
77 |
+
x_unpad, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
|
78 |
+
softmax_scale=self.softmax_scale, causal=causal
|
79 |
+
)
|
80 |
+
output = rearrange(pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'),
|
81 |
+
indices, batch_size, seqlen),
|
82 |
+
'b s (h d) -> b s h d', h=nheads)
|
83 |
+
else:
|
84 |
+
assert max_s is not None
|
85 |
+
output = flash_attn_varlen_qkvpacked_func(
|
86 |
+
qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
|
87 |
+
softmax_scale=self.softmax_scale, causal=causal
|
88 |
+
)
|
89 |
+
|
90 |
+
return output, None
|
91 |
+
|
92 |
+
|
93 |
+
class SkyworkRMSNorm(nn.Module):
|
94 |
+
def __init__(self, hidden_size, eps=1e-6):
|
95 |
+
super().__init__()
|
96 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
97 |
+
self.variance_epsilon = eps
|
98 |
+
|
99 |
+
def forward(self, hidden_states):
|
100 |
+
input_dtype = hidden_states.dtype
|
101 |
+
hidden_states = hidden_states.to(torch.float32)
|
102 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
103 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
104 |
+
return self.weight * hidden_states.to(input_dtype)
|
105 |
+
|
106 |
+
|
107 |
+
try:
|
108 |
+
from apex.normalization import FusedRMSNorm
|
109 |
+
|
110 |
+
SkyworkRMSNorm = FusedRMSNorm # noqa
|
111 |
+
|
112 |
+
logger.info('Discovered apex.normalization.FusedRMSNorm - will use it instead ofSkyworkRMSNorm')
|
113 |
+
except ImportError:
|
114 |
+
# using the normal SkyworkRMSNorm
|
115 |
+
pass
|
116 |
+
except Exception:
|
117 |
+
logger.warning('discovered apex but it failed to load, falling back to SkyworkRMSNorm')
|
118 |
+
pass
|
119 |
+
|
120 |
+
|
121 |
+
NORM2FN = {
|
122 |
+
'rms_norm': SkyworkRMSNorm,
|
123 |
+
'layer_norm': nn.LayerNorm,
|
124 |
+
}
|
125 |
+
|
126 |
+
|
127 |
+
class SkyworkVisionEmbeddings(nn.Module):
|
128 |
+
def __init__(self, config: SkyworkVisionConfig):
|
129 |
+
super().__init__()
|
130 |
+
self.config = config
|
131 |
+
self.embed_dim = config.hidden_size
|
132 |
+
self.image_size = config.image_size
|
133 |
+
self.patch_size = config.patch_size
|
134 |
+
|
135 |
+
self.class_embedding = nn.Parameter(
|
136 |
+
torch.randn(1, 1, self.embed_dim),
|
137 |
+
)
|
138 |
+
|
139 |
+
self.patch_embedding = nn.Conv2d(
|
140 |
+
in_channels=3, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size
|
141 |
+
)
|
142 |
+
|
143 |
+
self.num_patches = (self.image_size // self.patch_size) ** 2
|
144 |
+
self.num_positions = self.num_patches + 1
|
145 |
+
|
146 |
+
self.position_embedding = nn.Parameter(torch.randn(1, self.num_positions, self.embed_dim))
|
147 |
+
|
148 |
+
def _get_pos_embed(self, pos_embed, H, W):
|
149 |
+
target_dtype = pos_embed.dtype
|
150 |
+
pos_embed = pos_embed.float().reshape(
|
151 |
+
1, self.image_size // self.patch_size, self.image_size // self.patch_size, -1).permute(0, 3, 1, 2)
|
152 |
+
pos_embed = F.interpolate(pos_embed, size=(H, W), mode='bicubic', align_corners=False). \
|
153 |
+
reshape(1, -1, H * W).permute(0, 2, 1).to(target_dtype)
|
154 |
+
return pos_embed
|
155 |
+
|
156 |
+
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
|
157 |
+
target_dtype = self.patch_embedding.weight.dtype
|
158 |
+
patch_embeds = self.patch_embedding(pixel_values) # shape = [*, channel, width, height]
|
159 |
+
batch_size, _, height, width = patch_embeds.shape
|
160 |
+
patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
|
161 |
+
class_embeds = self.class_embedding.expand(batch_size, 1, -1).to(target_dtype)
|
162 |
+
embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
|
163 |
+
position_embedding = torch.cat([
|
164 |
+
self.position_embedding[:, :1, :],
|
165 |
+
self._get_pos_embed(self.position_embedding[:, 1:, :], height, width)
|
166 |
+
], dim=1)
|
167 |
+
embeddings = embeddings + position_embedding.to(target_dtype)
|
168 |
+
return embeddings
|
169 |
+
|
170 |
+
|
171 |
+
class SkyworkAttention(nn.Module):
|
172 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
173 |
+
|
174 |
+
def __init__(self, config: SkyworkVisionConfig):
|
175 |
+
super().__init__()
|
176 |
+
self.config = config
|
177 |
+
self.embed_dim = config.hidden_size
|
178 |
+
self.num_heads = config.num_attention_heads
|
179 |
+
self.use_flash_attn = config.use_flash_attn and has_flash_attn
|
180 |
+
if config.use_flash_attn and not has_flash_attn:
|
181 |
+
print('Warning: Flash Attention is not available, use_flash_attn is set to False.')
|
182 |
+
self.head_dim = self.embed_dim // self.num_heads
|
183 |
+
if self.head_dim * self.num_heads != self.embed_dim:
|
184 |
+
raise ValueError(
|
185 |
+
f'embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:'
|
186 |
+
f' {self.num_heads}).'
|
187 |
+
)
|
188 |
+
|
189 |
+
self.scale = self.head_dim ** -0.5
|
190 |
+
self.qkv = nn.Linear(self.embed_dim, 3 * self.embed_dim, bias=config.qkv_bias)
|
191 |
+
self.attn_drop = nn.Dropout(config.attention_dropout)
|
192 |
+
self.proj_drop = nn.Dropout(config.dropout)
|
193 |
+
|
194 |
+
self.qk_normalization = config.qk_normalization
|
195 |
+
|
196 |
+
if self.qk_normalization:
|
197 |
+
self.q_norm = SkyworkRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
|
198 |
+
self.k_norm = SkyworkRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
|
199 |
+
|
200 |
+
if self.use_flash_attn:
|
201 |
+
self.inner_attn = FlashAttention(attention_dropout=config.attention_dropout)
|
202 |
+
self.proj = nn.Linear(self.embed_dim, self.embed_dim)
|
203 |
+
|
204 |
+
def _naive_attn(self, x):
|
205 |
+
B, N, C = x.shape
|
206 |
+
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
207 |
+
q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple)
|
208 |
+
|
209 |
+
if self.qk_normalization:
|
210 |
+
B_, H_, N_, D_ = q.shape
|
211 |
+
q = self.q_norm(q.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
|
212 |
+
k = self.k_norm(k.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
|
213 |
+
|
214 |
+
attn = ((q * self.scale) @ k.transpose(-2, -1))
|
215 |
+
attn = attn.softmax(dim=-1)
|
216 |
+
attn = self.attn_drop(attn)
|
217 |
+
|
218 |
+
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
|
219 |
+
x = self.proj(x)
|
220 |
+
x = self.proj_drop(x)
|
221 |
+
return x
|
222 |
+
|
223 |
+
def _flash_attn(self, x, key_padding_mask=None, need_weights=False):
|
224 |
+
qkv = self.qkv(x)
|
225 |
+
qkv = rearrange(qkv, 'b s (three h d) -> b s three h d', three=3, h=self.num_heads)
|
226 |
+
|
227 |
+
if self.qk_normalization:
|
228 |
+
q, k, v = qkv.unbind(2)
|
229 |
+
q = self.q_norm(q.flatten(-2, -1)).view(q.shape)
|
230 |
+
k = self.k_norm(k.flatten(-2, -1)).view(k.shape)
|
231 |
+
qkv = torch.stack([q, k, v], dim=2)
|
232 |
+
|
233 |
+
context, _ = self.inner_attn(
|
234 |
+
qkv, key_padding_mask=key_padding_mask, need_weights=need_weights, causal=False
|
235 |
+
)
|
236 |
+
outs = self.proj(rearrange(context, 'b s h d -> b s (h d)'))
|
237 |
+
outs = self.proj_drop(outs)
|
238 |
+
return outs
|
239 |
+
|
240 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
241 |
+
x = self._naive_attn(hidden_states) if not self.use_flash_attn else self._flash_attn(hidden_states)
|
242 |
+
return x
|
243 |
+
|
244 |
+
|
245 |
+
class SkyworkMLP(nn.Module):
|
246 |
+
def __init__(self, config: SkyworkVisionConfig):
|
247 |
+
super().__init__()
|
248 |
+
self.config = config
|
249 |
+
self.act = ACT2FN[config.hidden_act]
|
250 |
+
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
|
251 |
+
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
|
252 |
+
|
253 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
254 |
+
hidden_states = self.fc1(hidden_states)
|
255 |
+
hidden_states = self.act(hidden_states)
|
256 |
+
hidden_states = self.fc2(hidden_states)
|
257 |
+
return hidden_states
|
258 |
+
|
259 |
+
|
260 |
+
class SkyworkVisionEncoderLayer(nn.Module):
|
261 |
+
def __init__(self, config: SkyworkVisionConfig, drop_path_rate: float):
|
262 |
+
super().__init__()
|
263 |
+
self.embed_dim = config.hidden_size
|
264 |
+
self.intermediate_size = config.intermediate_size
|
265 |
+
self.norm_type = config.norm_type
|
266 |
+
|
267 |
+
self.attn = SkyworkAttention(config)
|
268 |
+
self.mlp = SkyworkMLP(config)
|
269 |
+
self.norm1 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
|
270 |
+
self.norm2 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
|
271 |
+
|
272 |
+
self.ls1 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
|
273 |
+
self.ls2 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
|
274 |
+
self.drop_path1 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
|
275 |
+
self.drop_path2 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
|
276 |
+
|
277 |
+
def forward(
|
278 |
+
self,
|
279 |
+
hidden_states: torch.Tensor,
|
280 |
+
) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor], Optional[Tuple[torch.FloatTensor]]]:
|
281 |
+
"""
|
282 |
+
Args:
|
283 |
+
hidden_states (`Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
284 |
+
"""
|
285 |
+
hidden_states = hidden_states + self.drop_path1(self.attn(self.norm1(hidden_states).to(hidden_states.dtype)) * self.ls1)
|
286 |
+
|
287 |
+
hidden_states = hidden_states + self.drop_path2(self.mlp(self.norm2(hidden_states).to(hidden_states.dtype)) * self.ls2)
|
288 |
+
|
289 |
+
return hidden_states
|
290 |
+
|
291 |
+
|
292 |
+
class SkyworkVisionEncoder(nn.Module):
|
293 |
+
"""
|
294 |
+
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
|
295 |
+
[`SkyworkEncoderLayer`].
|
296 |
+
|
297 |
+
Args:
|
298 |
+
config (`SkyworkConfig`):
|
299 |
+
The corresponding vision configuration for the `SkyworkEncoder`.
|
300 |
+
"""
|
301 |
+
|
302 |
+
def __init__(self, config: SkyworkVisionConfig):
|
303 |
+
super().__init__()
|
304 |
+
self.config = config
|
305 |
+
# stochastic depth decay rule
|
306 |
+
dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, config.num_hidden_layers)]
|
307 |
+
self.layers = nn.ModuleList([
|
308 |
+
SkyworkVisionEncoderLayer(config, dpr[idx]) for idx in range(config.num_hidden_layers)])
|
309 |
+
self.gradient_checkpointing = True
|
310 |
+
|
311 |
+
def forward(
|
312 |
+
self,
|
313 |
+
inputs_embeds,
|
314 |
+
output_hidden_states: Optional[bool] = None,
|
315 |
+
return_dict: Optional[bool] = None,
|
316 |
+
) -> Union[Tuple, BaseModelOutput]:
|
317 |
+
r"""
|
318 |
+
Args:
|
319 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
320 |
+
Embedded representation of the inputs. Should be float, not int tokens.
|
321 |
+
output_hidden_states (`bool`, *optional*):
|
322 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
323 |
+
for more detail.
|
324 |
+
return_dict (`bool`, *optional*):
|
325 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
326 |
+
"""
|
327 |
+
output_hidden_states = (
|
328 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
329 |
+
)
|
330 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
331 |
+
|
332 |
+
encoder_states = () if output_hidden_states else None
|
333 |
+
hidden_states = inputs_embeds
|
334 |
+
|
335 |
+
for idx, encoder_layer in enumerate(self.layers):
|
336 |
+
if output_hidden_states:
|
337 |
+
encoder_states = encoder_states + (hidden_states,)
|
338 |
+
if self.gradient_checkpointing and self.training:
|
339 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
340 |
+
encoder_layer,
|
341 |
+
hidden_states)
|
342 |
+
else:
|
343 |
+
layer_outputs = encoder_layer(
|
344 |
+
hidden_states,
|
345 |
+
)
|
346 |
+
hidden_states = layer_outputs
|
347 |
+
|
348 |
+
if output_hidden_states:
|
349 |
+
encoder_states = encoder_states + (hidden_states,)
|
350 |
+
|
351 |
+
if not return_dict:
|
352 |
+
return tuple(v for v in [hidden_states, encoder_states] if v is not None)
|
353 |
+
return BaseModelOutput(
|
354 |
+
last_hidden_state=hidden_states, hidden_states=encoder_states
|
355 |
+
)
|
356 |
+
|
357 |
+
|
358 |
+
class SkyworkVisionModel(PreTrainedModel):
|
359 |
+
main_input_name = 'pixel_values'
|
360 |
+
_supports_flash_attn_2 = True
|
361 |
+
config_class = SkyworkVisionConfig
|
362 |
+
_no_split_modules = ['SkyworkVisionEncoderLayer']
|
363 |
+
|
364 |
+
def __init__(self, config: SkyworkVisionConfig):
|
365 |
+
super().__init__(config)
|
366 |
+
self.config = config
|
367 |
+
|
368 |
+
self.embeddings = SkyworkVisionEmbeddings(config)
|
369 |
+
self.encoder = SkyworkVisionEncoder(config)
|
370 |
+
|
371 |
+
def resize_pos_embeddings(self, old_size, new_size, patch_size):
|
372 |
+
pos_emb = self.embeddings.position_embedding
|
373 |
+
_, num_positions, embed_dim = pos_emb.shape
|
374 |
+
cls_emb = pos_emb[:, :1, :]
|
375 |
+
pos_emb = pos_emb[:, 1:, :].reshape(1, old_size // patch_size, old_size // patch_size, -1).permute(0, 3, 1, 2)
|
376 |
+
pos_emb = F.interpolate(pos_emb.float(), size=new_size // patch_size, mode='bicubic', align_corners=False)
|
377 |
+
pos_emb = pos_emb.to(cls_emb.dtype).reshape(1, embed_dim, -1).permute(0, 2, 1)
|
378 |
+
pos_emb = torch.cat([cls_emb, pos_emb], dim=1)
|
379 |
+
self.embeddings.position_embedding = nn.Parameter(pos_emb)
|
380 |
+
self.embeddings.image_size = new_size
|
381 |
+
logger.info('Resized position embeddings from {} to {}'.format(old_size, new_size))
|
382 |
+
|
383 |
+
def get_input_embeddings(self):
|
384 |
+
return self.embeddings
|
385 |
+
|
386 |
+
def forward(
|
387 |
+
self,
|
388 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
389 |
+
output_hidden_states: Optional[bool] = None,
|
390 |
+
return_dict: Optional[bool] = None,
|
391 |
+
pixel_embeds: Optional[torch.FloatTensor] = None,
|
392 |
+
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
393 |
+
output_hidden_states = (
|
394 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
395 |
+
)
|
396 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
397 |
+
|
398 |
+
if pixel_values is None and pixel_embeds is None:
|
399 |
+
raise ValueError('You have to specify pixel_values or pixel_embeds')
|
400 |
+
|
401 |
+
if pixel_embeds is not None:
|
402 |
+
hidden_states = pixel_embeds
|
403 |
+
else:
|
404 |
+
if len(pixel_values.shape) == 4:
|
405 |
+
hidden_states = self.embeddings(pixel_values)
|
406 |
+
else:
|
407 |
+
raise ValueError(f'wrong pixel_values size: {pixel_values.shape}')
|
408 |
+
encoder_outputs = self.encoder(
|
409 |
+
inputs_embeds=hidden_states,
|
410 |
+
output_hidden_states=output_hidden_states,
|
411 |
+
return_dict=return_dict,
|
412 |
+
)
|
413 |
+
last_hidden_state = encoder_outputs.last_hidden_state
|
414 |
+
pooled_output = last_hidden_state[:, 0, :]
|
415 |
+
|
416 |
+
if not return_dict:
|
417 |
+
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
|
418 |
+
|
419 |
+
return BaseModelOutputWithPooling(
|
420 |
+
last_hidden_state=last_hidden_state,
|
421 |
+
pooler_output=pooled_output,
|
422 |
+
hidden_states=encoder_outputs.hidden_states,
|
423 |
+
attentions=encoder_outputs.attentions,
|
424 |
+
)
|
outputs_stats.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:30f720a6c9249726c214142c75d8c753d5cc201e3482c2405034012ebdaa8e67
|
3 |
+
size 53953211
|
preprocessor_config.json
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"crop_size": 448,
|
3 |
+
"do_center_crop": true,
|
4 |
+
"do_normalize": true,
|
5 |
+
"do_resize": true,
|
6 |
+
"feature_extractor_type": "CLIPFeatureExtractor",
|
7 |
+
"image_mean": [
|
8 |
+
0.485,
|
9 |
+
0.456,
|
10 |
+
0.406
|
11 |
+
],
|
12 |
+
"image_std": [
|
13 |
+
0.229,
|
14 |
+
0.224,
|
15 |
+
0.225
|
16 |
+
],
|
17 |
+
"resample": 3,
|
18 |
+
"size": 448
|
19 |
+
}
|
pytorch_model-00001-of-00016.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c5ced854215015e96cd15f1e04e233eef58c6cc62cffb184a8f3f698f6e1cdfd
|
3 |
+
size 1977080752
|
pytorch_model-00002-of-00016.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bf85fad6bfeb43d34ffbb8d528b8fb40aee8021b0501f56f83e9d1019824beda
|
3 |
+
size 1966729982
|
pytorch_model-00003-of-00016.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ae15f02c5db493a1645aee6238a38f8bd1167d26820d020d882a9b00b8672401
|
3 |
+
size 1966729982
|
pytorch_model-00004-of-00016.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7238ac555738d0fa68a145c7495a4ab4f2770033711b781942540509894b0f8f
|
3 |
+
size 1966729982
|
pytorch_model-00005-of-00016.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:70775eaec5d616824db26c6865f15c30810dab2a7f215eebda8349e3ac7ebd78
|
3 |
+
size 1966729982
|
pytorch_model-00006-of-00016.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4b8551d094afebb1281b4a2e0cca94b85b8f35223106025a27441fcaa66c2aea
|
3 |
+
size 1229192920
|
pytorch_model-00007-of-00016.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:30a8c530e36707cb3d449df3ff864d953e9a60cfdaebc2f576cf4387c095d511
|
3 |
+
size 1990292234
|
pytorch_model-00008-of-00016.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3c0e0ab30e9d9538c3d2ab34e7e4f2623d07047bc15f331fae3c91c83f82590a
|
3 |
+
size 1953344189
|
pytorch_model-00009-of-00016.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ad7e6f91ddd4e78347ea54fa5aca42ac53331e2da697d27f995ff1ca73c91501
|
3 |
+
size 1953344381
|
pytorch_model-00010-of-00016.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:314185898d50a4a6187e2144086f628e1f694a081fa13ddf044ce347ac535d06
|
3 |
+
size 1994193964
|
pytorch_model-00011-of-00016.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cfcbdc2e828c70ec320d9aedefd36b67c39aba7d30e5642ecac59290384e93d6
|
3 |
+
size 1953312580
|
pytorch_model-00012-of-00016.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:03c703bb12565bab55ae1bc684c3429f80afcb3952b2cd9290458e41a091ea9b
|
3 |
+
size 1953344381
|
pytorch_model-00013-of-00016.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fa65556bd45f287f9ac6e298f69e8709436bc21d45964d9122bd7e192f94bb66
|
3 |
+
size 1953344381
|
pytorch_model-00014-of-00016.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:65db62a56db80da50e4de79e26690e64e41bb38b7f1638bcfc8c7ba9c9171777
|
3 |
+
size 1994193964
|
pytorch_model-00015-of-00016.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f7357448e216e9a8757f57221088ada361fbbafe10942cf5811a66b5a2c19139
|
3 |
+
size 1953312580
|
pytorch_model-00016-of-00016.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ca1ba466eac1a05daf9c75def7cfd6977884f0e041d2f45c7c01f9d8190ba11f
|
3 |
+
size 1814287316
|
pytorch_model.bin.index.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
special_tokens_map.json
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|object_ref_start|>",
|
4 |
+
"<|object_ref_end|>",
|
5 |
+
"<|box_start|>",
|
6 |
+
"<|box_end|>",
|
7 |
+
"<|quad_start|>",
|
8 |
+
"<|quad_end|>",
|
9 |
+
"<|vision_start|>",
|
10 |
+
"<|vision_end|>",
|
11 |
+
"<|vision_pad|>",
|
12 |
+
"<|image_pad|>",
|
13 |
+
"<|video_pad|>",
|
14 |
+
"<img>",
|
15 |
+
"</img>",
|
16 |
+
"<IMG_CONTEXT>",
|
17 |
+
"<quad>",
|
18 |
+
"</quad>",
|
19 |
+
"<ref>",
|
20 |
+
"</ref>",
|
21 |
+
"<box>",
|
22 |
+
"</box>",
|
23 |
+
"<|begin▁of▁sentence|>",
|
24 |
+
"<|end▁of▁sentence|>"
|
25 |
+
],
|
26 |
+
"bos_token": {
|
27 |
+
"content": "<|begin▁of▁sentence|>",
|
28 |
+
"lstrip": false,
|
29 |
+
"normalized": false,
|
30 |
+
"rstrip": false,
|
31 |
+
"single_word": false
|
32 |
+
},
|
33 |
+
"eos_token": {
|
34 |
+
"content": "<|end▁of▁sentence|>",
|
35 |
+
"lstrip": false,
|
36 |
+
"normalized": false,
|
37 |
+
"rstrip": false,
|
38 |
+
"single_word": false
|
39 |
+
},
|
40 |
+
"pad_token": {
|
41 |
+
"content": "<|endoftext|>",
|
42 |
+
"lstrip": false,
|
43 |
+
"normalized": false,
|
44 |
+
"rstrip": false,
|
45 |
+
"single_word": false
|
46 |
+
}
|
47 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a350ed12efa53684c72bf880e075ee34b83aa78c0f023747b67014a565bf6fe7
|
3 |
+
size 11425390
|
tokenizer_config.json
ADDED
@@ -0,0 +1,330 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"add_prefix_space": null,
|
5 |
+
"added_tokens_decoder": {
|
6 |
+
"151643": {
|
7 |
+
"content": "<|end▁of▁sentence|>",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": false,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false,
|
12 |
+
"special": true
|
13 |
+
},
|
14 |
+
"151644": {
|
15 |
+
"content": "<|User|>",
|
16 |
+
"lstrip": false,
|
17 |
+
"normalized": false,
|
18 |
+
"rstrip": false,
|
19 |
+
"single_word": false,
|
20 |
+
"special": false
|
21 |
+
},
|
22 |
+
"151645": {
|
23 |
+
"content": "<|Assistant|>",
|
24 |
+
"lstrip": false,
|
25 |
+
"normalized": false,
|
26 |
+
"rstrip": false,
|
27 |
+
"single_word": false,
|
28 |
+
"special": false
|
29 |
+
},
|
30 |
+
"151646": {
|
31 |
+
"content": "<|begin▁of▁sentence|>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false,
|
36 |
+
"special": true
|
37 |
+
},
|
38 |
+
"151647": {
|
39 |
+
"content": "<|EOT|>",
|
40 |
+
"lstrip": false,
|
41 |
+
"normalized": false,
|
42 |
+
"rstrip": false,
|
43 |
+
"single_word": false,
|
44 |
+
"special": false
|
45 |
+
},
|
46 |
+
"151648": {
|
47 |
+
"content": "<think>",
|
48 |
+
"lstrip": false,
|
49 |
+
"normalized": false,
|
50 |
+
"rstrip": false,
|
51 |
+
"single_word": false,
|
52 |
+
"special": false
|
53 |
+
},
|
54 |
+
"151649": {
|
55 |
+
"content": "</think>",
|
56 |
+
"lstrip": false,
|
57 |
+
"normalized": false,
|
58 |
+
"rstrip": false,
|
59 |
+
"single_word": false,
|
60 |
+
"special": false
|
61 |
+
},
|
62 |
+
"151650": {
|
63 |
+
"content": "<|quad_start|>",
|
64 |
+
"lstrip": false,
|
65 |
+
"normalized": false,
|
66 |
+
"rstrip": false,
|
67 |
+
"single_word": false,
|
68 |
+
"special": true
|
69 |
+
},
|
70 |
+
"151651": {
|
71 |
+
"content": "<|quad_end|>",
|
72 |
+
"lstrip": false,
|
73 |
+
"normalized": false,
|
74 |
+
"rstrip": false,
|
75 |
+
"single_word": false,
|
76 |
+
"special": true
|
77 |
+
},
|
78 |
+
"151652": {
|
79 |
+
"content": "<|vision_start|>",
|
80 |
+
"lstrip": false,
|
81 |
+
"normalized": false,
|
82 |
+
"rstrip": false,
|
83 |
+
"single_word": false,
|
84 |
+
"special": true
|
85 |
+
},
|
86 |
+
"151653": {
|
87 |
+
"content": "<|vision_end|>",
|
88 |
+
"lstrip": false,
|
89 |
+
"normalized": false,
|
90 |
+
"rstrip": false,
|
91 |
+
"single_word": false,
|
92 |
+
"special": true
|
93 |
+
},
|
94 |
+
"151654": {
|
95 |
+
"content": "<|vision_pad|>",
|
96 |
+
"lstrip": false,
|
97 |
+
"normalized": false,
|
98 |
+
"rstrip": false,
|
99 |
+
"single_word": false,
|
100 |
+
"special": true
|
101 |
+
},
|
102 |
+
"151655": {
|
103 |
+
"content": "<|image_pad|>",
|
104 |
+
"lstrip": false,
|
105 |
+
"normalized": false,
|
106 |
+
"rstrip": false,
|
107 |
+
"single_word": false,
|
108 |
+
"special": true
|
109 |
+
},
|
110 |
+
"151656": {
|
111 |
+
"content": "<|video_pad|>",
|
112 |
+
"lstrip": false,
|
113 |
+
"normalized": false,
|
114 |
+
"rstrip": false,
|
115 |
+
"single_word": false,
|
116 |
+
"special": true
|
117 |
+
},
|
118 |
+
"151657": {
|
119 |
+
"content": "<tool_call>",
|
120 |
+
"lstrip": false,
|
121 |
+
"normalized": false,
|
122 |
+
"rstrip": false,
|
123 |
+
"single_word": false,
|
124 |
+
"special": false
|
125 |
+
},
|
126 |
+
"151658": {
|
127 |
+
"content": "</tool_call>",
|
128 |
+
"lstrip": false,
|
129 |
+
"normalized": false,
|
130 |
+
"rstrip": false,
|
131 |
+
"single_word": false,
|
132 |
+
"special": false
|
133 |
+
},
|
134 |
+
"151659": {
|
135 |
+
"content": "<|fim_prefix|>",
|
136 |
+
"lstrip": false,
|
137 |
+
"normalized": false,
|
138 |
+
"rstrip": false,
|
139 |
+
"single_word": false,
|
140 |
+
"special": false
|
141 |
+
},
|
142 |
+
"151660": {
|
143 |
+
"content": "<|fim_middle|>",
|
144 |
+
"lstrip": false,
|
145 |
+
"normalized": false,
|
146 |
+
"rstrip": false,
|
147 |
+
"single_word": false,
|
148 |
+
"special": false
|
149 |
+
},
|
150 |
+
"151661": {
|
151 |
+
"content": "<|fim_suffix|>",
|
152 |
+
"lstrip": false,
|
153 |
+
"normalized": false,
|
154 |
+
"rstrip": false,
|
155 |
+
"single_word": false,
|
156 |
+
"special": false
|
157 |
+
},
|
158 |
+
"151662": {
|
159 |
+
"content": "<|fim_pad|>",
|
160 |
+
"lstrip": false,
|
161 |
+
"normalized": false,
|
162 |
+
"rstrip": false,
|
163 |
+
"single_word": false,
|
164 |
+
"special": false
|
165 |
+
},
|
166 |
+
"151663": {
|
167 |
+
"content": "<|repo_name|>",
|
168 |
+
"lstrip": false,
|
169 |
+
"normalized": false,
|
170 |
+
"rstrip": false,
|
171 |
+
"single_word": false,
|
172 |
+
"special": false
|
173 |
+
},
|
174 |
+
"151664": {
|
175 |
+
"content": "<|file_sep|>",
|
176 |
+
"lstrip": false,
|
177 |
+
"normalized": false,
|
178 |
+
"rstrip": false,
|
179 |
+
"single_word": false,
|
180 |
+
"special": false
|
181 |
+
},
|
182 |
+
"151665": {
|
183 |
+
"content": "<img>",
|
184 |
+
"lstrip": false,
|
185 |
+
"normalized": false,
|
186 |
+
"rstrip": false,
|
187 |
+
"single_word": false,
|
188 |
+
"special": true
|
189 |
+
},
|
190 |
+
"151666": {
|
191 |
+
"content": "</img>",
|
192 |
+
"lstrip": false,
|
193 |
+
"normalized": false,
|
194 |
+
"rstrip": false,
|
195 |
+
"single_word": false,
|
196 |
+
"special": true
|
197 |
+
},
|
198 |
+
"151667": {
|
199 |
+
"content": "<IMG_CONTEXT>",
|
200 |
+
"lstrip": false,
|
201 |
+
"normalized": false,
|
202 |
+
"rstrip": false,
|
203 |
+
"single_word": false,
|
204 |
+
"special": true
|
205 |
+
},
|
206 |
+
"151668": {
|
207 |
+
"content": "<quad>",
|
208 |
+
"lstrip": false,
|
209 |
+
"normalized": false,
|
210 |
+
"rstrip": false,
|
211 |
+
"single_word": false,
|
212 |
+
"special": true
|
213 |
+
},
|
214 |
+
"151669": {
|
215 |
+
"content": "</quad>",
|
216 |
+
"lstrip": false,
|
217 |
+
"normalized": false,
|
218 |
+
"rstrip": false,
|
219 |
+
"single_word": false,
|
220 |
+
"special": true
|
221 |
+
},
|
222 |
+
"151670": {
|
223 |
+
"content": "<ref>",
|
224 |
+
"lstrip": false,
|
225 |
+
"normalized": false,
|
226 |
+
"rstrip": false,
|
227 |
+
"single_word": false,
|
228 |
+
"special": true
|
229 |
+
},
|
230 |
+
"151671": {
|
231 |
+
"content": "</ref>",
|
232 |
+
"lstrip": false,
|
233 |
+
"normalized": false,
|
234 |
+
"rstrip": false,
|
235 |
+
"single_word": false,
|
236 |
+
"special": true
|
237 |
+
},
|
238 |
+
"151672": {
|
239 |
+
"content": "<box>",
|
240 |
+
"lstrip": false,
|
241 |
+
"normalized": false,
|
242 |
+
"rstrip": false,
|
243 |
+
"single_word": false,
|
244 |
+
"special": true
|
245 |
+
},
|
246 |
+
"151673": {
|
247 |
+
"content": "</box>",
|
248 |
+
"lstrip": false,
|
249 |
+
"normalized": false,
|
250 |
+
"rstrip": false,
|
251 |
+
"single_word": false,
|
252 |
+
"special": true
|
253 |
+
},
|
254 |
+
"151674": {
|
255 |
+
"content": "<|endoftext|>",
|
256 |
+
"lstrip": false,
|
257 |
+
"normalized": false,
|
258 |
+
"rstrip": false,
|
259 |
+
"single_word": false,
|
260 |
+
"special": true
|
261 |
+
},
|
262 |
+
"151675": {
|
263 |
+
"content": "<|object_ref_start|>",
|
264 |
+
"lstrip": false,
|
265 |
+
"normalized": false,
|
266 |
+
"rstrip": false,
|
267 |
+
"single_word": false,
|
268 |
+
"special": true
|
269 |
+
},
|
270 |
+
"151676": {
|
271 |
+
"content": "<|object_ref_end|>",
|
272 |
+
"lstrip": false,
|
273 |
+
"normalized": false,
|
274 |
+
"rstrip": false,
|
275 |
+
"single_word": false,
|
276 |
+
"special": true
|
277 |
+
},
|
278 |
+
"151677": {
|
279 |
+
"content": "<|box_start|>",
|
280 |
+
"lstrip": false,
|
281 |
+
"normalized": false,
|
282 |
+
"rstrip": false,
|
283 |
+
"single_word": false,
|
284 |
+
"special": true
|
285 |
+
},
|
286 |
+
"151678": {
|
287 |
+
"content": "<|box_end|>",
|
288 |
+
"lstrip": false,
|
289 |
+
"normalized": false,
|
290 |
+
"rstrip": false,
|
291 |
+
"single_word": false,
|
292 |
+
"special": true
|
293 |
+
}
|
294 |
+
},
|
295 |
+
"additional_special_tokens": [
|
296 |
+
"<|object_ref_start|>",
|
297 |
+
"<|object_ref_end|>",
|
298 |
+
"<|box_start|>",
|
299 |
+
"<|box_end|>",
|
300 |
+
"<|quad_start|>",
|
301 |
+
"<|quad_end|>",
|
302 |
+
"<|vision_start|>",
|
303 |
+
"<|vision_end|>",
|
304 |
+
"<|vision_pad|>",
|
305 |
+
"<|image_pad|>",
|
306 |
+
"<|video_pad|>",
|
307 |
+
"<img>",
|
308 |
+
"</img>",
|
309 |
+
"<IMG_CONTEXT>",
|
310 |
+
"<quad>",
|
311 |
+
"</quad>",
|
312 |
+
"<ref>",
|
313 |
+
"</ref>",
|
314 |
+
"<box>",
|
315 |
+
"</box>",
|
316 |
+
"<|begin▁of▁sentence|>",
|
317 |
+
"<|end▁of▁sentence|>"
|
318 |
+
],
|
319 |
+
"bos_token": "<|begin▁of▁sentence|>",
|
320 |
+
"chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% set ns = namespace(is_first=false, is_tool=false, is_output_first=true, system_prompt='') %}{%- for message in messages %}{%- if message['role'] == 'system' %}{% set ns.system_prompt = message['content'] %}{%- endif %}{%- endfor %}{{bos_token}}{{ns.system_prompt}}{%- for message in messages %}{%- if message['role'] == 'user' %}{%- set ns.is_tool = false -%}{{'<|User|>' + message['content']}}{%- endif %}{%- if message['role'] == 'assistant' and message['content'] is none %}{%- set ns.is_tool = false -%}{%- for tool in message['tool_calls']%}{%- if not ns.is_first %}{{'<|Assistant|><|tool▁calls▁begin|><|tool▁call▁begin|>' + tool['type'] + '<|tool▁sep|>' + tool['function']['name'] + '\\n' + '```json' + '\\n' + tool['function']['arguments'] + '\\n' + '```' + '<|tool▁call▁end|>'}}{%- set ns.is_first = true -%}{%- else %}{{'\\n' + '<|tool▁call▁begin|>' + tool['type'] + '<|tool▁sep|>' + tool['function']['name'] + '\\n' + '```json' + '\\n' + tool['function']['arguments'] + '\\n' + '```' + '<|tool▁call▁end|>'}}{{'<|tool▁calls▁end|><|end▁of▁sentence|>'}}{%- endif %}{%- endfor %}{%- endif %}{%- if message['role'] == 'assistant' and message['content'] is not none %}{%- if ns.is_tool %}{{'<|tool▁outputs▁end|>' + message['content'] + '<|end▁of▁sentence|>'}}{%- set ns.is_tool = false -%}{%- else %}{% set content = message['content'] %}{% if '</think>' in content %}{% set content = content.split('</think>')[-1] %}{% endif %}{{'<|Assistant|>' + content + '<|end▁of▁sentence|>'}}{%- endif %}{%- endif %}{%- if message['role'] == 'tool' %}{%- set ns.is_tool = true -%}{%- if ns.is_output_first %}{{'<|tool▁outputs▁begin|><|tool▁output▁begin|>' + message['content'] + '<|tool▁output▁end|>'}}{%- set ns.is_output_first = false %}{%- else %}{{'\\n<|tool▁output▁begin|>' + message['content'] + '<|tool▁output▁end|>'}}{%- endif %}{%- endif %}{%- endfor -%}{% if ns.is_tool %}{{'<|tool▁outputs▁end|>'}}{% endif %}{% if add_generation_prompt and not ns.is_tool %}{{'<|Assistant|><think>\\n'}}{% endif %}",
|
321 |
+
"clean_up_tokenization_spaces": false,
|
322 |
+
"eos_token": "<|end▁of▁sentence|>",
|
323 |
+
"legacy": true,
|
324 |
+
"model_max_length": 16384,
|
325 |
+
"pad_token": "<|endoftext|>",
|
326 |
+
"sp_model_kwargs": {},
|
327 |
+
"tokenizer_class": "LlamaTokenizer",
|
328 |
+
"unk_token": null,
|
329 |
+
"use_default_system_prompt": false
|
330 |
+
}
|
zero_to_fp32.py
ADDED
@@ -0,0 +1,604 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import torch
|
17 |
+
import glob
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
from collections import OrderedDict
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
+
from deepspeed.utils import logger
|
27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class zero_model_state:
|
34 |
+
buffers: dict()
|
35 |
+
param_shapes: dict()
|
36 |
+
shared_params: list
|
37 |
+
ds_version: int
|
38 |
+
frozen_param_shapes: dict()
|
39 |
+
frozen_param_fragments: dict()
|
40 |
+
|
41 |
+
|
42 |
+
debug = 0
|
43 |
+
|
44 |
+
# load to cpu
|
45 |
+
device = torch.device('cpu')
|
46 |
+
|
47 |
+
|
48 |
+
def atoi(text):
|
49 |
+
return int(text) if text.isdigit() else text
|
50 |
+
|
51 |
+
|
52 |
+
def natural_keys(text):
|
53 |
+
'''
|
54 |
+
alist.sort(key=natural_keys) sorts in human order
|
55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
+
(See Toothy's implementation in the comments)
|
57 |
+
'''
|
58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
+
|
60 |
+
|
61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
+
if not os.path.isdir(checkpoint_dir):
|
63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
+
|
65 |
+
# there should be only one file
|
66 |
+
if zero_stage <= 2:
|
67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
+
elif zero_stage == 3:
|
69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
+
|
71 |
+
if not os.path.exists(file):
|
72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
+
|
74 |
+
return file
|
75 |
+
|
76 |
+
|
77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
+
|
81 |
+
if len(ckpt_files) == 0:
|
82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
+
|
84 |
+
return ckpt_files
|
85 |
+
|
86 |
+
|
87 |
+
def get_optim_files(checkpoint_dir):
|
88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
+
|
90 |
+
|
91 |
+
def get_model_state_files(checkpoint_dir):
|
92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
+
|
94 |
+
|
95 |
+
def parse_model_states(files):
|
96 |
+
zero_model_states = []
|
97 |
+
for file in files:
|
98 |
+
state_dict = torch.load(file, map_location=device)
|
99 |
+
|
100 |
+
if BUFFER_NAMES not in state_dict:
|
101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
+
if debug:
|
104 |
+
print("Found buffers:", buffer_names)
|
105 |
+
|
106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
+
|
110 |
+
# collect parameters that are included in param_shapes
|
111 |
+
param_names = []
|
112 |
+
for s in param_shapes:
|
113 |
+
for name in s.keys():
|
114 |
+
param_names.append(name)
|
115 |
+
|
116 |
+
# update with frozen parameters
|
117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
+
if frozen_param_shapes is not None:
|
119 |
+
if debug:
|
120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
+
param_names += list(frozen_param_shapes.keys())
|
122 |
+
|
123 |
+
# handle shared params
|
124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
+
|
126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
+
|
128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
+
|
130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
131 |
+
param_shapes=param_shapes,
|
132 |
+
shared_params=shared_params,
|
133 |
+
ds_version=ds_version,
|
134 |
+
frozen_param_shapes=frozen_param_shapes,
|
135 |
+
frozen_param_fragments=frozen_param_fragments)
|
136 |
+
zero_model_states.append(z_model_state)
|
137 |
+
|
138 |
+
return zero_model_states
|
139 |
+
|
140 |
+
|
141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
+
|
143 |
+
total_files = len(files)
|
144 |
+
state_dicts = []
|
145 |
+
for f in files:
|
146 |
+
state_dict = torch.load(f, map_location=device)
|
147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
148 |
+
# and also handle the case where it was already removed by another helper script
|
149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
150 |
+
state_dicts.append(state_dict)
|
151 |
+
|
152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
156 |
+
|
157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
159 |
+
# use the max of the partition_count to get the dp world_size.
|
160 |
+
|
161 |
+
if type(world_size) is list:
|
162 |
+
world_size = max(world_size)
|
163 |
+
|
164 |
+
if world_size != total_files:
|
165 |
+
raise ValueError(
|
166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
168 |
+
)
|
169 |
+
|
170 |
+
# the groups are named differently in each stage
|
171 |
+
if zero_stage <= 2:
|
172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
173 |
+
elif zero_stage == 3:
|
174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
175 |
+
else:
|
176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
177 |
+
|
178 |
+
if zero_stage <= 2:
|
179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
180 |
+
elif zero_stage == 3:
|
181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
183 |
+
#
|
184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
186 |
+
|
187 |
+
fp32_flat_groups = [
|
188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
189 |
+
]
|
190 |
+
|
191 |
+
return zero_stage, world_size, fp32_flat_groups
|
192 |
+
|
193 |
+
|
194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
195 |
+
"""
|
196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
197 |
+
|
198 |
+
Args:
|
199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
200 |
+
|
201 |
+
"""
|
202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
203 |
+
|
204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
207 |
+
|
208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
209 |
+
|
210 |
+
zero_model_states = parse_model_states(model_files)
|
211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
212 |
+
|
213 |
+
if zero_stage <= 2:
|
214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
215 |
+
exclude_frozen_parameters)
|
216 |
+
elif zero_stage == 3:
|
217 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
218 |
+
exclude_frozen_parameters)
|
219 |
+
|
220 |
+
|
221 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
222 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
223 |
+
return
|
224 |
+
|
225 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
226 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
227 |
+
|
228 |
+
if debug:
|
229 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
230 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
231 |
+
|
232 |
+
wanted_params = len(frozen_param_shapes)
|
233 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
234 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
235 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
236 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
237 |
+
|
238 |
+
total_params = 0
|
239 |
+
total_numel = 0
|
240 |
+
for name, shape in frozen_param_shapes.items():
|
241 |
+
total_params += 1
|
242 |
+
unpartitioned_numel = shape.numel()
|
243 |
+
total_numel += unpartitioned_numel
|
244 |
+
|
245 |
+
state_dict[name] = frozen_param_fragments[name]
|
246 |
+
|
247 |
+
if debug:
|
248 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
249 |
+
|
250 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
251 |
+
|
252 |
+
|
253 |
+
def _has_callable(obj, fn):
|
254 |
+
attr = getattr(obj, fn, None)
|
255 |
+
return callable(attr)
|
256 |
+
|
257 |
+
|
258 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
259 |
+
param_shapes = zero_model_states[0].param_shapes
|
260 |
+
|
261 |
+
# Reconstruction protocol:
|
262 |
+
#
|
263 |
+
# XXX: document this
|
264 |
+
|
265 |
+
if debug:
|
266 |
+
for i in range(world_size):
|
267 |
+
for j in range(len(fp32_flat_groups[0])):
|
268 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
269 |
+
|
270 |
+
# XXX: memory usage doubles here (zero2)
|
271 |
+
num_param_groups = len(fp32_flat_groups[0])
|
272 |
+
merged_single_partition_of_fp32_groups = []
|
273 |
+
for i in range(num_param_groups):
|
274 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
275 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
276 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
277 |
+
avail_numel = sum(
|
278 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
279 |
+
|
280 |
+
if debug:
|
281 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
282 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
283 |
+
# not asserting if there is a mismatch due to possible padding
|
284 |
+
print(f"Have {avail_numel} numels to process.")
|
285 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
286 |
+
|
287 |
+
# params
|
288 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
289 |
+
# out-of-core computing solution
|
290 |
+
total_numel = 0
|
291 |
+
total_params = 0
|
292 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
293 |
+
offset = 0
|
294 |
+
avail_numel = full_single_fp32_vector.numel()
|
295 |
+
for name, shape in shapes.items():
|
296 |
+
|
297 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
298 |
+
total_numel += unpartitioned_numel
|
299 |
+
total_params += 1
|
300 |
+
|
301 |
+
if debug:
|
302 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
303 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
304 |
+
offset += unpartitioned_numel
|
305 |
+
|
306 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
307 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
308 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
309 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
310 |
+
align_to = 2 * world_size
|
311 |
+
|
312 |
+
def zero2_align(x):
|
313 |
+
return align_to * math.ceil(x / align_to)
|
314 |
+
|
315 |
+
if debug:
|
316 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
317 |
+
|
318 |
+
offset = zero2_align(offset)
|
319 |
+
avail_numel = zero2_align(avail_numel)
|
320 |
+
|
321 |
+
if debug:
|
322 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
323 |
+
|
324 |
+
# Sanity check
|
325 |
+
if offset != avail_numel:
|
326 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
327 |
+
|
328 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
329 |
+
|
330 |
+
|
331 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
332 |
+
exclude_frozen_parameters):
|
333 |
+
state_dict = OrderedDict()
|
334 |
+
|
335 |
+
# buffers
|
336 |
+
buffers = zero_model_states[0].buffers
|
337 |
+
state_dict.update(buffers)
|
338 |
+
if debug:
|
339 |
+
print(f"added {len(buffers)} buffers")
|
340 |
+
|
341 |
+
if not exclude_frozen_parameters:
|
342 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
343 |
+
|
344 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
345 |
+
|
346 |
+
# recover shared parameters
|
347 |
+
for pair in zero_model_states[0].shared_params:
|
348 |
+
if pair[1] in state_dict:
|
349 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
350 |
+
|
351 |
+
return state_dict
|
352 |
+
|
353 |
+
|
354 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
355 |
+
remainder = unpartitioned_numel % world_size
|
356 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
357 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
358 |
+
return partitioned_numel, padding_numel
|
359 |
+
|
360 |
+
|
361 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
362 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
363 |
+
return
|
364 |
+
|
365 |
+
if debug:
|
366 |
+
for i in range(world_size):
|
367 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
368 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
369 |
+
|
370 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
371 |
+
wanted_params = len(frozen_param_shapes)
|
372 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
373 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
374 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
375 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
376 |
+
|
377 |
+
total_params = 0
|
378 |
+
total_numel = 0
|
379 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
380 |
+
total_params += 1
|
381 |
+
unpartitioned_numel = shape.numel()
|
382 |
+
total_numel += unpartitioned_numel
|
383 |
+
|
384 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
385 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
386 |
+
|
387 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
388 |
+
|
389 |
+
if debug:
|
390 |
+
print(
|
391 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
392 |
+
)
|
393 |
+
|
394 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
395 |
+
|
396 |
+
|
397 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
398 |
+
param_shapes = zero_model_states[0].param_shapes
|
399 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
400 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
401 |
+
# param, re-consolidating each param, while dealing with padding if any
|
402 |
+
|
403 |
+
# merge list of dicts, preserving order
|
404 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
405 |
+
|
406 |
+
if debug:
|
407 |
+
for i in range(world_size):
|
408 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
409 |
+
|
410 |
+
wanted_params = len(param_shapes)
|
411 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
412 |
+
# not asserting if there is a mismatch due to possible padding
|
413 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
414 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
415 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
416 |
+
|
417 |
+
# params
|
418 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
419 |
+
# out-of-core computing solution
|
420 |
+
offset = 0
|
421 |
+
total_numel = 0
|
422 |
+
total_params = 0
|
423 |
+
for name, shape in param_shapes.items():
|
424 |
+
|
425 |
+
unpartitioned_numel = shape.numel()
|
426 |
+
total_numel += unpartitioned_numel
|
427 |
+
total_params += 1
|
428 |
+
|
429 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
430 |
+
|
431 |
+
if debug:
|
432 |
+
print(
|
433 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
434 |
+
)
|
435 |
+
|
436 |
+
# XXX: memory usage doubles here
|
437 |
+
state_dict[name] = torch.cat(
|
438 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
439 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
440 |
+
offset += partitioned_numel
|
441 |
+
|
442 |
+
offset *= world_size
|
443 |
+
|
444 |
+
# Sanity check
|
445 |
+
if offset != avail_numel:
|
446 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
447 |
+
|
448 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
449 |
+
|
450 |
+
|
451 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
452 |
+
exclude_frozen_parameters):
|
453 |
+
state_dict = OrderedDict()
|
454 |
+
|
455 |
+
# buffers
|
456 |
+
buffers = zero_model_states[0].buffers
|
457 |
+
state_dict.update(buffers)
|
458 |
+
if debug:
|
459 |
+
print(f"added {len(buffers)} buffers")
|
460 |
+
|
461 |
+
if not exclude_frozen_parameters:
|
462 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
463 |
+
|
464 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
465 |
+
|
466 |
+
# recover shared parameters
|
467 |
+
for pair in zero_model_states[0].shared_params:
|
468 |
+
if pair[1] in state_dict:
|
469 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
470 |
+
|
471 |
+
return state_dict
|
472 |
+
|
473 |
+
|
474 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
|
475 |
+
"""
|
476 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
477 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
478 |
+
via a model hub.
|
479 |
+
|
480 |
+
Args:
|
481 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
482 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
483 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
484 |
+
|
485 |
+
Returns:
|
486 |
+
- pytorch ``state_dict``
|
487 |
+
|
488 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
489 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
490 |
+
the checkpoint.
|
491 |
+
|
492 |
+
A typical usage might be ::
|
493 |
+
|
494 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
495 |
+
# do the training and checkpoint saving
|
496 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
497 |
+
model = model.cpu() # move to cpu
|
498 |
+
model.load_state_dict(state_dict)
|
499 |
+
# submit to model hub or save the model to share with others
|
500 |
+
|
501 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
502 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
503 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
504 |
+
|
505 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
506 |
+
|
507 |
+
"""
|
508 |
+
if tag is None:
|
509 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
510 |
+
if os.path.isfile(latest_path):
|
511 |
+
with open(latest_path, 'r') as fd:
|
512 |
+
tag = fd.read().strip()
|
513 |
+
else:
|
514 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
515 |
+
|
516 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
517 |
+
|
518 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
519 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
520 |
+
|
521 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
522 |
+
|
523 |
+
|
524 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
|
525 |
+
"""
|
526 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
527 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
528 |
+
|
529 |
+
Args:
|
530 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
531 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
532 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
533 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
534 |
+
"""
|
535 |
+
|
536 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
|
537 |
+
print(f"Saving fp32 state dict to {output_file}")
|
538 |
+
torch.save(state_dict, output_file)
|
539 |
+
|
540 |
+
|
541 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
542 |
+
"""
|
543 |
+
1. Put the provided model to cpu
|
544 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
545 |
+
3. Load it into the provided model
|
546 |
+
|
547 |
+
Args:
|
548 |
+
- ``model``: the model object to update
|
549 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
550 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
551 |
+
|
552 |
+
Returns:
|
553 |
+
- ``model`: modified model
|
554 |
+
|
555 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
556 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
557 |
+
conveniently placed for you in the checkpoint folder.
|
558 |
+
|
559 |
+
A typical usage might be ::
|
560 |
+
|
561 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
562 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
563 |
+
# submit to model hub or save the model to share with others
|
564 |
+
|
565 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
566 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
567 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
568 |
+
|
569 |
+
"""
|
570 |
+
logger.info(f"Extracting fp32 weights")
|
571 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
572 |
+
|
573 |
+
logger.info(f"Overwriting model with fp32 weights")
|
574 |
+
model = model.cpu()
|
575 |
+
model.load_state_dict(state_dict, strict=False)
|
576 |
+
|
577 |
+
return model
|
578 |
+
|
579 |
+
|
580 |
+
if __name__ == "__main__":
|
581 |
+
|
582 |
+
parser = argparse.ArgumentParser()
|
583 |
+
parser.add_argument("checkpoint_dir",
|
584 |
+
type=str,
|
585 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
586 |
+
parser.add_argument(
|
587 |
+
"output_file",
|
588 |
+
type=str,
|
589 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
590 |
+
parser.add_argument("-t",
|
591 |
+
"--tag",
|
592 |
+
type=str,
|
593 |
+
default=None,
|
594 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
595 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
596 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
597 |
+
args = parser.parse_args()
|
598 |
+
|
599 |
+
debug = args.debug
|
600 |
+
|
601 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
602 |
+
args.output_file,
|
603 |
+
tag=args.tag,
|
604 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|