OrlandoHugBot commited on
Commit
16cc189
·
verified ·
1 Parent(s): a3ca336

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -1,35 +1,5 @@
1
- *.7z filter=lfs diff=lfs merge=lfs -text
2
- *.arrow filter=lfs diff=lfs merge=lfs -text
3
  *.bin filter=lfs diff=lfs merge=lfs -text
4
- *.bz2 filter=lfs diff=lfs merge=lfs -text
5
- *.ckpt filter=lfs diff=lfs merge=lfs -text
6
- *.ftz filter=lfs diff=lfs merge=lfs -text
7
- *.gz filter=lfs diff=lfs merge=lfs -text
8
- *.h5 filter=lfs diff=lfs merge=lfs -text
9
- *.joblib filter=lfs diff=lfs merge=lfs -text
10
- *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
- *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
- *.model filter=lfs diff=lfs merge=lfs -text
13
- *.msgpack filter=lfs diff=lfs merge=lfs -text
14
- *.npy filter=lfs diff=lfs merge=lfs -text
15
- *.npz filter=lfs diff=lfs merge=lfs -text
16
- *.onnx filter=lfs diff=lfs merge=lfs -text
17
- *.ot filter=lfs diff=lfs merge=lfs -text
18
- *.parquet filter=lfs diff=lfs merge=lfs -text
19
- *.pb filter=lfs diff=lfs merge=lfs -text
20
- *.pickle filter=lfs diff=lfs merge=lfs -text
21
- *.pkl filter=lfs diff=lfs merge=lfs -text
22
  *.pt filter=lfs diff=lfs merge=lfs -text
23
  *.pth filter=lfs diff=lfs merge=lfs -text
24
- *.rar filter=lfs diff=lfs merge=lfs -text
25
- *.safetensors filter=lfs diff=lfs merge=lfs -text
26
- saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
- *.tar.* filter=lfs diff=lfs merge=lfs -text
28
- *.tar filter=lfs diff=lfs merge=lfs -text
29
- *.tflite filter=lfs diff=lfs merge=lfs -text
30
- *.tgz filter=lfs diff=lfs merge=lfs -text
31
- *.wasm filter=lfs diff=lfs merge=lfs -text
32
- *.xz filter=lfs diff=lfs merge=lfs -text
33
- *.zip filter=lfs diff=lfs merge=lfs -text
34
- *.zst filter=lfs diff=lfs merge=lfs -text
35
- *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
1
  *.bin filter=lfs diff=lfs merge=lfs -text
2
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  *.pt filter=lfs diff=lfs merge=lfs -text
4
  *.pth filter=lfs diff=lfs merge=lfs -text
5
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
README.md ADDED
@@ -0,0 +1,212 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Skywork-R1V-38B-AWQ
2
+
3
+ This is the AWQ quantized version of [Skywork-R1V-38B](https://huggingface.co/Skywork/Skywork-R1V-38B), offering improved inference efficiency while maintaining model quality.
4
+
5
+ ## Model Description
6
+
7
+ Skywork R1V is a pioneering multimodal model with advanced reasoning capabilities through Chain-of-Thought. This quantized version maintains the core strengths of the original model while reducing computational requirements.
8
+
9
+ For detailed information about the model architecture and capabilities, please refer to the [original Skywork-R1V repository](https://github.com/SkyworkAI/Skywork-R1V) and [technical report](https://github.com/SkyworkAI/Skywork-R1V/blob/main/Skywork_R1V.pdf).
10
+
11
+ ## Benchmark Results
12
+
13
+ The AWQ quantized model maintains strong performance across key benchmarks:
14
+
15
+ | Benchmark | Score |
16
+ |-----------|-------|
17
+ | MMMU | 0.6 |
18
+ | MathV | 0.59 |
19
+ | AIME_2024 | 0.6 |
20
+
21
+ These results demonstrate that the quantized model preserves the mathematical and multimodal reasoning capabilities of the original model.
22
+
23
+ ## Usage
24
+
25
+ You can use the quantized model with different inference frameworks:
26
+
27
+ ### Using VLLM
28
+
29
+ #### Python API
30
+
31
+ ```python
32
+ import os
33
+ from vllm import LLM, SamplingParams
34
+ from vllm.entrypoints.chat_utils import load_chat_template
35
+
36
+ model_name = "Skywork/Skywork-R1V-38B-AWQ" # or local path
37
+ llm = LLM(model_name,
38
+ dtype='float16',
39
+ quantization="awq",
40
+ gpu_memory_utilization=0.85,
41
+ max_model_len=4096,
42
+ trust_remote_code=True,
43
+ )
44
+
45
+ # Add your inference code here
46
+ ```
47
+
48
+ #### OpenAI-compatible API Server
49
+
50
+ ```bash
51
+ MODEL_ID="Skywork/Skywork-R1V-38B-AWQ" # or local path
52
+
53
+
54
+ CUDA_VISIBLE_DEVICES=0 \
55
+ python -m vllm.entrypoints.openai.api_server \
56
+ --model $MODEL_ID \
57
+ --dtype float16 \
58
+ --quantization awq \
59
+ --port 23334 \
60
+ --max-model-len 12000 \
61
+ --gpu-memory-utilization 0.9 \
62
+ --trust-remote-code
63
+ ```
64
+
65
+ ### Using LMDeploy
66
+
67
+ ```python
68
+ import os
69
+ from lmdeploy import pipeline, TurbomindEngineConfig, ChatTemplateConfig
70
+ from lmdeploy.vl import load_image
71
+
72
+ model_path = "Skywork/Skywork-R1V-38B-AWQ" # or local path
73
+
74
+ engine_config = TurbomindEngineConfig(cache_max_entry_count=0.75)
75
+ chat_template_config = ChatTemplateConfig(model_name=model_path)
76
+ pipe = pipeline(model_path,
77
+ backend_config=engine_config,
78
+ chat_template_config=chat_template_config,
79
+ )
80
+
81
+ # Example: Multimodal inference
82
+ image = load_image('table.jpg')
83
+ response = pipe(('Describe this image?', image))
84
+ print(response.text)
85
+ ```
86
+
87
+ ## Hardware Requirements
88
+
89
+ The AWQ quantization reduces the memory footprint compared to the original FP16 model. We recommend:
90
+
91
+ - At least one GPU with 30GB+ VRAM for inference
92
+ - For optimal performance with longer contexts, 40GB+ VRAM is recommended
93
+
94
+ ## Citation
95
+
96
+ If you use this model in your research, please cite:
97
+
98
+ ```bibtex
99
+ @article{skywork2025r1v,
100
+ title = {Skywork R1V: Pioneering Multimodal Reasoning with Chain-of-Thought},
101
+ author = {Yi Peng, Chris, Xiaokun Wang, Yichen Wei, Jiangbo Pei, Weijie Qiu, Ai Jian, Yunzhuo Hao, Jiachun Pan, Tianyidan Xie, Li Ge, Rongxian Zhuang, Xuchen Song, Yang Liu, Yahui Zhou},
102
+ year = {2025},
103
+ journal = {https://github.com/SkyworkAI/Skywork-R1V/blob/main/report/Skywork_R1V.pdf},
104
+ url = {https://huggingface.co/Skywork/Skywork-R1V-38B}
105
+ }
106
+ ```
107
+
108
+ # Skywork-R1V-38B-AWQ (中文说明)
109
+
110
+ 这是 [Skywork-R1V-38B](https://huggingface.co/Skywork/Skywork-R1V-38B) 的 AWQ 量化版本,提供了更高效的推理性能,同时保持模型质量。
111
+
112
+ ## 模型描述
113
+
114
+ Skywork R1V 是一个开创性的多模态模型,通过思维链(Chain-of-Thought)技术具备出色的推理能力。这个量化版本保持了原始模型的核心优势,同时降低了计算需求。
115
+
116
+ 有关模型架构和能力的详细信息,请参阅[原始 Skywork-R1V 代码库](https://github.com/SkyworkAI/Skywork-R1V)和[技术报告](https://github.com/SkyworkAI/Skywork-R1V/blob/main/Skywork_R1V.pdf)。
117
+
118
+ ## 基准测试结果
119
+
120
+ AWQ 量化模型在关键基准测试中保持了强劲的性能:
121
+
122
+ | 基准测试 | 分数 |
123
+ |-----------|-------|
124
+ | MMMU | 0.6 |
125
+ | MathV | 0.59 |
126
+ | AIME_2024 | 0.6 |
127
+
128
+ 这些结果表明,量化模型保留了原始模型的数学和多模态推理能力。
129
+
130
+ ## 使用方法
131
+
132
+ 您可以使用不同的推理框架来使用这个量化模型:
133
+
134
+ ### 使用 VLLM
135
+
136
+ #### Python API
137
+
138
+ ```python
139
+ import os
140
+ from vllm import LLM, SamplingParams
141
+ from vllm.entrypoints.chat_utils import load_chat_template
142
+
143
+ model_name = "Skywork/Skywork-R1V-38B-AWQ" # 或本地路径
144
+ llm = LLM(model_name,
145
+ dtype='float16',
146
+ quantization="awq",
147
+ gpu_memory_utilization=0.85,
148
+ max_model_len=4096,
149
+ trust_remote_code=True,
150
+ )
151
+
152
+ # 在此添加您的推理代码
153
+ ```
154
+
155
+ #### OpenAI 兼容的 API 服务器
156
+
157
+ ```bash
158
+ MODEL_ID="Skywork/Skywork-R1V-38B-AWQ" # 或本地路径
159
+
160
+ CUDA_VISIBLE_DEVICES=0 \
161
+ python -m vllm.entrypoints.openai.api_server \
162
+ --model $MODEL_ID \
163
+ --dtype float16 \
164
+ --quantization awq \
165
+ --port 23334 \
166
+ --max-model-len 12000 \
167
+ --gpu-memory-utilization 0.9 \
168
+ --trust-remote-code
169
+ ```
170
+
171
+ ### 使用 LMDeploy
172
+
173
+ ```python
174
+ import os
175
+ from lmdeploy import pipeline, TurbomindEngineConfig, ChatTemplateConfig
176
+ from lmdeploy.vl import load_image
177
+
178
+ model_path = "Skywork/Skywork-R1V-38B-AWQ" # 或本地路径
179
+
180
+ engine_config = TurbomindEngineConfig(cache_max_entry_count=0.75)
181
+ chat_template_config = ChatTemplateConfig(model_name=model_path)
182
+ pipe = pipeline(model_path,
183
+ backend_config=engine_config,
184
+ chat_template_config=chat_template_config,
185
+ )
186
+
187
+ # 示例:多模态推理
188
+ image = load_image('table.jpg')
189
+ response = pipe(('描述这个图片?', image))
190
+ print(response.text)
191
+ ```
192
+
193
+ ## 硬件要求
194
+
195
+ 与原始 FP16 模型相比,AWQ 量化减少了内存占用。我们建议:
196
+
197
+ - 至少一块 30GB+ 显存的 GPU 用于推理
198
+ - 对于更长上下文的最佳性能,建议使用 40GB+ 显存
199
+
200
+ ## 引用
201
+
202
+ 如果您在研究中使用此模型,请引用:
203
+
204
+ ```bibtex
205
+ @article{skywork2025r1v,
206
+ title = {Skywork R1V: Pioneering Multimodal Reasoning with Chain-of-Thought},
207
+ author = {Yi Peng, Chris, Xiaokun Wang, Yichen Wei, Jiangbo Pei, Weijie Qiu, Ai Jian, Yunzhuo Hao, Jiachun Pan, Tianyidan Xie, Li Ge, Rongxian Zhuang, Xuchen Song, Yang Liu, Yahui Zhou},
208
+ year = {2025},
209
+ journal = {https://github.com/SkyworkAI/Skywork-R1V/blob/main/report/Skywork_R1V.pdf},
210
+ url = {https://huggingface.co/Skywork/Skywork-R1V-38B}
211
+ }
212
+ ```
added_tokens.json ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</box>": 92552,
3
+ "</img>": 92545,
4
+ "</quad>": 92548,
5
+ "</ref>": 92550,
6
+ "<IMG_CONTEXT>": 92546,
7
+ "<box>": 92551,
8
+ "<img>": 92544,
9
+ "<quad>": 92547,
10
+ "<ref>": 92549
11
+ }
config.json ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_commit_hash": null,
3
+ "_name_or_path": "",
4
+ "architectures":["InternVLChatModel"],
5
+ "auto_map": {
6
+ "AutoConfig": "configuration_skywork_chat.SkyworkChatConfig",
7
+ "AutoModel": "modeling_skywork_chat.SkyworkChatModel",
8
+ "AutoModelForCausalLM": "modeling_skywork_chat.SkyworkChatModel"
9
+ },
10
+ "downsample_ratio": 0.5,
11
+ "dynamic_image_size": true,
12
+ "force_image_size": 448,
13
+ "hidden_size": 5120,
14
+ "llm_config": {
15
+ "_attn_implementation_autoset": true,
16
+ "_name_or_path": "",
17
+ "add_cross_attention": false,
18
+ "architectures": [
19
+ "Qwen2ForCausalLM"
20
+ ],
21
+ "attention_dropout": 0.0,
22
+ "attn_implementation": "eager",
23
+ "bad_words_ids": null,
24
+ "begin_suppress_tokens": null,
25
+ "bos_token_id": 151643,
26
+ "chunk_size_feed_forward": 0,
27
+ "cross_attention_hidden_size": null,
28
+ "decoder_start_token_id": null,
29
+ "diversity_penalty": 0.0,
30
+ "do_sample": false,
31
+ "early_stopping": false,
32
+ "encoder_no_repeat_ngram_size": 0,
33
+ "eos_token_id": 151643,
34
+ "exponential_decay_length_penalty": null,
35
+ "finetuning_task": null,
36
+ "forced_bos_token_id": null,
37
+ "forced_eos_token_id": null,
38
+ "hidden_act": "silu",
39
+ "hidden_size": 5120,
40
+ "id2label": {
41
+ "0": "LABEL_0",
42
+ "1": "LABEL_1"
43
+ },
44
+ "initializer_range": 0.02,
45
+ "intermediate_size": 27648,
46
+ "is_decoder": false,
47
+ "is_encoder_decoder": false,
48
+ "label2id": {
49
+ "LABEL_0": 0,
50
+ "LABEL_1": 1
51
+ },
52
+ "length_penalty": 1.0,
53
+ "max_length": 20,
54
+ "max_position_embeddings": 131072,
55
+ "max_window_layers": 64,
56
+ "min_length": 0,
57
+ "model_type": "qwen2",
58
+ "no_repeat_ngram_size": 0,
59
+ "num_attention_heads": 40,
60
+ "num_beam_groups": 1,
61
+ "num_beams": 1,
62
+ "num_hidden_layers": 64,
63
+ "num_key_value_heads": 8,
64
+ "num_return_sequences": 1,
65
+ "output_attentions": false,
66
+ "output_hidden_states": false,
67
+ "output_scores": false,
68
+ "pad_token_id": null,
69
+ "prefix": null,
70
+ "problem_type": null,
71
+ "pruned_heads": {},
72
+ "quantization_config": {
73
+ "bits": 4,
74
+ "group_size": 128,
75
+ "quant_method": "awq",
76
+ "version": "gemm",
77
+ "zero_point": true
78
+ },
79
+ "remove_invalid_values": false,
80
+ "repetition_penalty": 1.0,
81
+ "return_dict": true,
82
+ "return_dict_in_generate": false,
83
+ "rms_norm_eps": 1e-05,
84
+ "rope_scaling": null,
85
+ "rope_theta": 1000000.0,
86
+ "sep_token_id": null,
87
+ "sliding_window": null,
88
+ "suppress_tokens": null,
89
+ "task_specific_params": null,
90
+ "temperature": 1.0,
91
+ "tf_legacy_loss": false,
92
+ "tie_encoder_decoder": false,
93
+ "tie_word_embeddings": false,
94
+ "tokenizer_class": null,
95
+ "top_k": 50,
96
+ "top_p": 1.0,
97
+ "torch_dtype": "bfloat16",
98
+ "torchscript": false,
99
+ "transformers_version": "4.46.3",
100
+ "typical_p": 1.0,
101
+ "use_bfloat16": false,
102
+ "use_cache": false,
103
+ "use_sliding_window": false,
104
+ "vocab_size": 152064
105
+ },
106
+ "max_dynamic_patch": 6,
107
+ "min_dynamic_patch": 1,
108
+ "model_type": "internvl_chat",
109
+ "pad2square": false,
110
+ "ps_version": "v2",
111
+ "select_layer": -1,
112
+ "template": "skywork-r1v-chat",
113
+ "tie_word_embeddings": false,
114
+ "torch_dtype": "float16",
115
+ "transformers_version": null,
116
+ "use_backbone_lora": 0,
117
+ "use_llm_lora": 0,
118
+ "use_thumbnail": true,
119
+ "vision_config": {
120
+ "_attn_implementation_autoset": true,
121
+ "_name_or_path": "",
122
+ "add_cross_attention": false,
123
+ "architectures": null,
124
+ "attention_dropout": 0.0,
125
+ "bad_words_ids": null,
126
+ "begin_suppress_tokens": null,
127
+ "bos_token_id": null,
128
+ "chunk_size_feed_forward": 0,
129
+ "cross_attention_hidden_size": null,
130
+ "decoder_start_token_id": null,
131
+ "diversity_penalty": 0.0,
132
+ "do_sample": false,
133
+ "drop_path_rate": 0.0,
134
+ "dropout": 0.0,
135
+ "early_stopping": false,
136
+ "encoder_no_repeat_ngram_size": 0,
137
+ "eos_token_id": null,
138
+ "exponential_decay_length_penalty": null,
139
+ "finetuning_task": null,
140
+ "forced_bos_token_id": null,
141
+ "forced_eos_token_id": null,
142
+ "hidden_act": "gelu",
143
+ "hidden_size": 3200,
144
+ "id2label": {
145
+ "0": "LABEL_0",
146
+ "1": "LABEL_1"
147
+ },
148
+ "image_size": 448,
149
+ "initializer_factor": 0.1,
150
+ "initializer_range": 1e-10,
151
+ "intermediate_size": 12800,
152
+ "is_decoder": false,
153
+ "is_encoder_decoder": false,
154
+ "label2id": {
155
+ "LABEL_0": 0,
156
+ "LABEL_1": 1
157
+ },
158
+ "layer_norm_eps": 1e-06,
159
+ "length_penalty": 1.0,
160
+ "max_length": 20,
161
+ "min_length": 0,
162
+ "model_type": "",
163
+ "no_repeat_ngram_size": 0,
164
+ "norm_type": "rms_norm",
165
+ "num_attention_heads": 25,
166
+ "num_beam_groups": 1,
167
+ "num_beams": 1,
168
+ "num_channels": 3,
169
+ "num_hidden_layers": 45,
170
+ "num_return_sequences": 1,
171
+ "output_attentions": false,
172
+ "output_hidden_states": false,
173
+ "output_scores": false,
174
+ "pad_token_id": null,
175
+ "patch_size": 14,
176
+ "prefix": null,
177
+ "problem_type": null,
178
+ "pruned_heads": {},
179
+ "qk_normalization": true,
180
+ "qkv_bias": false,
181
+ "remove_invalid_values": false,
182
+ "repetition_penalty": 1.0,
183
+ "return_dict": true,
184
+ "return_dict_in_generate": false,
185
+ "sep_token_id": null,
186
+ "suppress_tokens": null,
187
+ "task_specific_params": null,
188
+ "temperature": 1.0,
189
+ "tf_legacy_loss": false,
190
+ "tie_encoder_decoder": false,
191
+ "tie_word_embeddings": true,
192
+ "tokenizer_class": null,
193
+ "top_k": 50,
194
+ "top_p": 1.0,
195
+ "torch_dtype": "bfloat16",
196
+ "torchscript": false,
197
+ "transformers_version": "4.46.3",
198
+ "typical_p": 1.0,
199
+ "use_bfloat16": true,
200
+ "use_flash_attn": false
201
+ }
202
+ }
configuration_skywork_chat.py ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import copy
2
+
3
+ from transformers import AutoConfig, LlamaConfig
4
+ from transformers.configuration_utils import PretrainedConfig
5
+ from transformers.utils import logging
6
+
7
+ from .configuration_skywork_vit import SkyworkVisionConfig
8
+ from .configuration_skywork_lm2 import SkyworkLM2Config
9
+ from transformers import Qwen2Config, Qwen2ForCausalLM
10
+
11
+ logger = logging.get_logger(__name__)
12
+
13
+
14
+ class SkyworkChatConfig(PretrainedConfig):
15
+ model_type = 'skywork_chat' #
16
+ is_composition = True
17
+
18
+ def __init__(
19
+ self,
20
+ vision_config=None,
21
+ llm_config=None,
22
+ use_backbone_lora=0,
23
+ use_llm_lora=0,
24
+ select_layer=-1,
25
+ force_image_size=None,
26
+ downsample_ratio=0.5,
27
+ template=None,
28
+ dynamic_image_size=False,
29
+ use_thumbnail=False,
30
+ ps_version='v1',
31
+ min_dynamic_patch=1,
32
+ max_dynamic_patch=6,
33
+ **kwargs):
34
+ super().__init__(**kwargs)
35
+ if vision_config is None:
36
+ vision_config = {'architectures': ['SkyworkVisionModel']}
37
+ logger.info('vision_config is None. Initializing the SkyworkVisionConfig with default values.')
38
+
39
+ if llm_config is None:
40
+ llm_config = {'architectures': ['Qwen2ForCausalLM']}
41
+ logger.info('llm_config is None. Initializing the LlamaConfig config with default values (`LlamaConfig`).')
42
+
43
+ self.vision_config = SkyworkVisionConfig(**vision_config)
44
+ if llm_config.get('architectures')[0] == 'LlamaForCausalLM':
45
+ self.llm_config = LlamaConfig(**llm_config)
46
+ elif llm_config.get('architectures')[0] == 'Qwen2ForCausalLM':
47
+ self.llm_config = Qwen2Config(**llm_config)
48
+ else:
49
+ raise ValueError('Unsupported architecture: {}'.format(llm_config.get('architectures')[0]))
50
+
51
+
52
+ self.use_backbone_lora = use_backbone_lora
53
+ self.use_llm_lora = use_llm_lora
54
+ self.select_layer = select_layer
55
+ self.force_image_size = force_image_size
56
+ self.downsample_ratio = downsample_ratio
57
+ self.template = template
58
+ self.dynamic_image_size = dynamic_image_size
59
+ self.use_thumbnail = use_thumbnail
60
+ self.ps_version = ps_version # pixel shuffle version
61
+ self.min_dynamic_patch = min_dynamic_patch
62
+ self.max_dynamic_patch = max_dynamic_patch
63
+
64
+ logger.info(f'vision_select_layer: {self.select_layer}')
65
+ logger.info(f'ps_version: {self.ps_version}')
66
+ logger.info(f'min_dynamic_patch: {self.min_dynamic_patch}')
67
+ logger.info(f'max_dynamic_patch: {self.max_dynamic_patch}')
68
+
69
+ def to_dict(self):
70
+ """
71
+ Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
72
+
73
+ Returns:
74
+ `Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
75
+ """
76
+ output = copy.deepcopy(self.__dict__)
77
+ output['vision_config'] = self.vision_config.to_dict()
78
+ output['llm_config'] = self.llm_config.to_dict()
79
+ output['model_type'] = self.__class__.model_type
80
+ output['use_backbone_lora'] = self.use_backbone_lora
81
+ output['use_llm_lora'] = self.use_llm_lora
82
+ output['select_layer'] = self.select_layer
83
+ output['force_image_size'] = self.force_image_size
84
+ output['downsample_ratio'] = self.downsample_ratio
85
+ output['template'] = self.template
86
+ output['dynamic_image_size'] = self.dynamic_image_size
87
+ output['use_thumbnail'] = self.use_thumbnail
88
+ output['ps_version'] = self.ps_version
89
+ output['min_dynamic_patch'] = self.min_dynamic_patch
90
+ output['max_dynamic_patch'] = self.max_dynamic_patch
91
+
92
+ return output
configuration_skywork_lm2.py ADDED
@@ -0,0 +1,139 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) The Skywork team and The HuggingFace Inc. team. All rights reserved.
2
+ #
3
+ # This code is based on transformers/src/transformers/models/llama/configuration_llama.py
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """ SkyworkLM2 model configuration"""
17
+
18
+ from transformers.configuration_utils import PretrainedConfig
19
+ from transformers.utils import logging
20
+
21
+ logger = logging.get_logger(__name__)
22
+
23
+
24
+ # Modified from transformers.model.llama.configuration_llama.LlamaConfig
25
+ class SkyworkLM2Config(PretrainedConfig):
26
+ r"""
27
+ Args:
28
+ vocab_size (`int`, *optional*, defaults to 32000):
29
+ Vocabulary size of the SkyworkLM2 model. Defines the number of different tokens that can be represented by the
30
+ `inputs_ids` passed when calling [`SkyworkLM2Model`]
31
+ hidden_size (`int`, *optional*, defaults to 4096):
32
+ Dimension of the hidden representations.
33
+ intermediate_size (`int`, *optional*, defaults to 11008):
34
+ Dimension of the MLP representations.
35
+ num_hidden_layers (`int`, *optional*, defaults to 32):
36
+ Number of hidden layers in the Transformer encoder.
37
+ num_attention_heads (`int`, *optional*, defaults to 32):
38
+ Number of attention heads for each attention layer in the Transformer encoder.
39
+ num_key_value_heads (`int`, *optional*):
40
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
41
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
42
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
43
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
44
+ by meanpooling all the original heads within that group. For more details checkout [this
45
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
46
+ `num_attention_heads`.
47
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
48
+ The non-linear activation function (function or string) in the decoder.
49
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
50
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
51
+ just in case (e.g., 512 or 1024 or 2048).
52
+ initializer_range (`float`, *optional*, defaults to 0.02):
53
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
54
+ rms_norm_eps (`float`, *optional*, defaults to 1e-12):
55
+ The epsilon used by the rms normalization layers.
56
+ use_cache (`bool`, *optional*, defaults to `True`):
57
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
58
+ relevant if `config.is_decoder=True`.
59
+ tie_word_embeddings(`bool`, *optional*, defaults to `False`):
60
+ Whether to tie weight embeddings
61
+ Example:
62
+
63
+ """
64
+ _auto_class = 'AutoConfig'
65
+
66
+ def __init__(
67
+ self,
68
+ vocab_size=103168,
69
+ hidden_size=4096,
70
+ intermediate_size=11008,
71
+ num_hidden_layers=32,
72
+ num_attention_heads=32,
73
+ num_key_value_heads=None,
74
+ hidden_act='silu',
75
+ max_position_embeddings=2048,
76
+ initializer_range=0.02,
77
+ rms_norm_eps=1e-6,
78
+ use_cache=True,
79
+ pad_token_id=0,
80
+ bos_token_id=1,
81
+ eos_token_id=2,
82
+ tie_word_embeddings=False,
83
+ bias=True,
84
+ rope_theta=10000,
85
+ rope_scaling=None,
86
+ attn_implementation='eager',
87
+ **kwargs,
88
+ ):
89
+ self.vocab_size = vocab_size
90
+ self.max_position_embeddings = max_position_embeddings
91
+ self.hidden_size = hidden_size
92
+ self.intermediate_size = intermediate_size
93
+ self.num_hidden_layers = num_hidden_layers
94
+ self.num_attention_heads = num_attention_heads
95
+ self.bias = bias
96
+
97
+ if num_key_value_heads is None:
98
+ num_key_value_heads = num_attention_heads
99
+ self.num_key_value_heads = num_key_value_heads
100
+
101
+ self.hidden_act = hidden_act
102
+ self.initializer_range = initializer_range
103
+ self.rms_norm_eps = rms_norm_eps
104
+ self.use_cache = use_cache
105
+ self.rope_theta = rope_theta
106
+ self.rope_scaling = rope_scaling
107
+ self._rope_scaling_validation()
108
+
109
+ self.attn_implementation = attn_implementation
110
+ if self.attn_implementation is None:
111
+ self.attn_implementation = 'eager'
112
+ super().__init__(
113
+ pad_token_id=pad_token_id,
114
+ bos_token_id=bos_token_id,
115
+ eos_token_id=eos_token_id,
116
+ tie_word_embeddings=tie_word_embeddings,
117
+ **kwargs,
118
+ )
119
+
120
+ def _rope_scaling_validation(self):
121
+ """
122
+ Validate the `rope_scaling` configuration.
123
+ """
124
+ if self.rope_scaling is None:
125
+ return
126
+
127
+ if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
128
+ raise ValueError(
129
+ '`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, '
130
+ f'got {self.rope_scaling}'
131
+ )
132
+ rope_scaling_type = self.rope_scaling.get('type', None)
133
+ rope_scaling_factor = self.rope_scaling.get('factor', None)
134
+ if rope_scaling_type is None or rope_scaling_type not in ['linear', 'dynamic']:
135
+ raise ValueError(
136
+ f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
137
+ )
138
+ if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor < 1.0:
139
+ raise ValueError(f"`rope_scaling`'s factor field must be a float >= 1, got {rope_scaling_factor}")
configuration_skywork_vit.py ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from typing import Union
3
+
4
+ from transformers.configuration_utils import PretrainedConfig
5
+ from transformers.utils import logging
6
+
7
+ logger = logging.get_logger(__name__)
8
+
9
+
10
+ class SkyworkVisionConfig(PretrainedConfig):
11
+ r"""
12
+ Args:
13
+ num_channels (`int`, *optional*, defaults to 3):
14
+ Number of color channels in the input images (e.g., 3 for RGB).
15
+ patch_size (`int`, *optional*, defaults to 14):
16
+ The size (resolution) of each patch.
17
+ image_size (`int`, *optional*, defaults to 224):
18
+ The size (resolution) of each image.
19
+ qkv_bias (`bool`, *optional*, defaults to `False`):
20
+ Whether to add a bias to the queries and values in the self-attention layers.
21
+ hidden_size (`int`, *optional*, defaults to 3200):
22
+ Dimensionality of the encoder layers and the pooler layer.
23
+ num_attention_heads (`int`, *optional*, defaults to 25):
24
+ Number of attention heads for each attention layer in the Transformer encoder.
25
+ intermediate_size (`int`, *optional*, defaults to 12800):
26
+ Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
27
+ qk_normalization (`bool`, *optional*, defaults to `True`):
28
+ Whether to normalize the queries and keys in the self-attention layers.
29
+ num_hidden_layers (`int`, *optional*, defaults to 48):
30
+ Number of hidden layers in the Transformer encoder.
31
+ use_flash_attn (`bool`, *optional*, defaults to `True`):
32
+ Whether to use flash attention mechanism.
33
+ hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
34
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
35
+ `"relu"`, `"selu"` and `"gelu_new"` ``"gelu"` are supported.
36
+ layer_norm_eps (`float`, *optional*, defaults to 1e-6):
37
+ The epsilon used by the layer normalization layers.
38
+ dropout (`float`, *optional*, defaults to 0.0):
39
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
40
+ drop_path_rate (`float`, *optional*, defaults to 0.0):
41
+ Dropout rate for stochastic depth.
42
+ attention_dropout (`float`, *optional*, defaults to 0.0):
43
+ The dropout ratio for the attention probabilities.
44
+ initializer_range (`float`, *optional*, defaults to 0.02):
45
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
46
+ initializer_factor (`float`, *optional*, defaults to 0.1):
47
+ A factor for layer scale.
48
+ """
49
+
50
+
51
+ def __init__(
52
+ self,
53
+ num_channels=3,
54
+ patch_size=14,
55
+ image_size=224,
56
+ qkv_bias=False,
57
+ hidden_size=3200,
58
+ num_attention_heads=25,
59
+ intermediate_size=12800,
60
+ qk_normalization=True,
61
+ num_hidden_layers=48,
62
+ use_flash_attn=True,
63
+ hidden_act='gelu',
64
+ norm_type='rms_norm',
65
+ layer_norm_eps=1e-6,
66
+ dropout=0.0,
67
+ drop_path_rate=0.0,
68
+ attention_dropout=0.0,
69
+ initializer_range=0.02,
70
+ initializer_factor=0.1,
71
+ **kwargs,
72
+ ):
73
+ super().__init__(**kwargs)
74
+
75
+ self.hidden_size = hidden_size
76
+ self.intermediate_size = intermediate_size
77
+ self.dropout = dropout
78
+ self.drop_path_rate = drop_path_rate
79
+ self.num_hidden_layers = num_hidden_layers
80
+ self.num_attention_heads = num_attention_heads
81
+ self.num_channels = num_channels
82
+ self.patch_size = patch_size
83
+ self.image_size = image_size
84
+ self.initializer_range = initializer_range
85
+ self.initializer_factor = initializer_factor
86
+ self.attention_dropout = attention_dropout
87
+ self.layer_norm_eps = layer_norm_eps
88
+ self.hidden_act = hidden_act
89
+ self.norm_type = norm_type
90
+ self.qkv_bias = qkv_bias
91
+ self.qk_normalization = qk_normalization
92
+ self.use_flash_attn = use_flash_attn
93
+
94
+ @classmethod
95
+ def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> 'PretrainedConfig':
96
+ config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
97
+
98
+ if 'vision_config' in config_dict:
99
+ config_dict = config_dict['vision_config']
100
+
101
+ return cls.from_dict(config_dict, **kwargs)
conversation.py ADDED
@@ -0,0 +1,163 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Conversation prompt templates.
3
+
4
+ We kindly request that you import fastchat instead of copying this file if you wish to use it.
5
+ If you have changes in mind, please contribute back so the community can benefit collectively and continue to maintain these valuable templates.
6
+ """
7
+
8
+ import dataclasses
9
+ from enum import IntEnum, auto
10
+ from typing import Any, Dict, List, Tuple, Union
11
+
12
+
13
+ class SeparatorStyle(IntEnum):
14
+ """Separator styles."""
15
+
16
+ ADD_COLON_SINGLE = auto()
17
+ ADD_COLON_TWO = auto()
18
+ ADD_COLON_SPACE_SINGLE = auto()
19
+ NO_COLON_SINGLE = auto()
20
+ NO_COLON_TWO = auto()
21
+ ADD_NEW_LINE_SINGLE = auto()
22
+ LLAMA2 = auto()
23
+ CHATGLM = auto()
24
+ CHATML = auto()
25
+ DOLLY = auto()
26
+ RWKV = auto()
27
+ PHOENIX = auto()
28
+ ROBIN = auto()
29
+ FALCON_CHAT = auto()
30
+ CHATGLM3 = auto()
31
+ MPT = auto()
32
+
33
+
34
+ @dataclasses.dataclass
35
+ class Conversation:
36
+ """A class that manages prompt templates and keeps all conversation history."""
37
+
38
+ # The name of this template
39
+ name: str
40
+ # The template of the system prompt
41
+ system_template: str = '{system_message}'
42
+ # The system message
43
+ system_message: str = ''
44
+ # The names of two roles
45
+ roles: Tuple[str] = ('USER', 'ASSISTANT')
46
+ # All messages. Each item is (role, message).
47
+ messages: List[List[str]] = ()
48
+ # The number of few shot examples
49
+ offset: int = 0
50
+ # The separator style and configurations
51
+ sep_style: SeparatorStyle = SeparatorStyle.ADD_COLON_SINGLE
52
+ sep: str = '\n'
53
+ sep2: str = None
54
+ # Stop criteria (the default one is EOS token)
55
+ stop_str: Union[str, List[str]] = None
56
+ # Stops generation if meeting any token in this list
57
+ stop_token_ids: List[int] = None
58
+
59
+ def get_prompt(self) -> str:
60
+ """Get the prompt for generation."""
61
+ system_prompt = self.system_template.format(system_message=self.system_message)
62
+ ret = system_prompt
63
+ for role, message in self.messages:
64
+ if message:
65
+ if type(message) is tuple:
66
+ message, _, _ = message
67
+ ret += role + message
68
+ else:
69
+ ret += role
70
+
71
+ return ret
72
+
73
+ def set_system_message(self, system_message: str):
74
+ """Set the system message."""
75
+ self.system_message = system_message
76
+
77
+ def append_message(self, role: str, message: str):
78
+ """Append a new message."""
79
+ self.messages.append([role, message])
80
+
81
+ def update_last_message(self, message: str):
82
+ """Update the last output.
83
+
84
+ The last message is typically set to be None when constructing the prompt,
85
+ so we need to update it in-place after getting the response from a model.
86
+ """
87
+ self.messages[-1][1] = message
88
+
89
+ def to_gradio_chatbot(self):
90
+ """Convert the conversation to gradio chatbot format."""
91
+ ret = []
92
+ for i, (role, msg) in enumerate(self.messages[self.offset :]):
93
+ if i % 2 == 0:
94
+ ret.append([msg, None])
95
+ else:
96
+ ret[-1][-1] = msg
97
+ return ret
98
+
99
+ def to_openai_api_messages(self):
100
+ """Convert the conversation to OpenAI chat completion format."""
101
+ ret = [{'role': 'system', 'content': self.system_message}]
102
+
103
+ for i, (_, msg) in enumerate(self.messages[self.offset :]):
104
+ if i % 2 == 0:
105
+ ret.append({'role': 'user', 'content': msg})
106
+ else:
107
+ if msg is not None:
108
+ ret.append({'role': 'assistant', 'content': msg})
109
+ return ret
110
+
111
+ def copy(self):
112
+ return Conversation(
113
+ name=self.name,
114
+ system_template=self.system_template,
115
+ system_message=self.system_message,
116
+ roles=self.roles,
117
+ messages=[[x, y] for x, y in self.messages],
118
+ offset=self.offset,
119
+ sep_style=self.sep_style,
120
+ sep=self.sep,
121
+ sep2=self.sep2,
122
+ stop_str=self.stop_str,
123
+ stop_token_ids=self.stop_token_ids,
124
+ )
125
+
126
+ def dict(self):
127
+ return {
128
+ 'template_name': self.name,
129
+ 'system_message': self.system_message,
130
+ 'roles': self.roles,
131
+ 'messages': self.messages,
132
+ 'offset': self.offset,
133
+ }
134
+
135
+
136
+ # A global registry for all conversation templates
137
+ conv_templates: Dict[str, Conversation] = {}
138
+
139
+
140
+ def register_conv_template(template: Conversation, override: bool = False):
141
+ """Register a new conversation template."""
142
+ if not override:
143
+ assert (
144
+ template.name not in conv_templates
145
+ ), f'{template.name} has been registered.'
146
+
147
+ conv_templates[template.name] = template
148
+
149
+
150
+ def get_conv_template(name: str) -> Conversation:
151
+ """Get a conversation template."""
152
+ return conv_templates[name].copy()
153
+
154
+ register_conv_template(
155
+ Conversation(
156
+ name='skywork-r1v-chat',
157
+ system_template='<|begin▁of▁sentence|>{system_message}',
158
+ system_message='',
159
+ roles=('<|User|>\n', '<|Assistant|><think>\n'),
160
+ sep_style=SeparatorStyle.MPT,
161
+ sep='<|end▁of▁sentence|>',
162
+ )
163
+ )
generation_config.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 151646,
4
+ "eos_token_id": 151643,
5
+ "do_sample": true,
6
+ "temperature": 0.6,
7
+ "top_p": 0.95,
8
+ "transformers_version": "4.39.3"
9
+ }
inputs_stats.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1555713a03276cca494bc28af4d0ee2ba9650c1fdcc761f7adea62c6fc4388ac
3
+ size 37987294
modeling_skywork_chat.py ADDED
@@ -0,0 +1,356 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import warnings
2
+ from typing import List, Optional, Tuple, Union
3
+
4
+ import torch.utils.checkpoint
5
+ import transformers
6
+ from torch import nn
7
+ from torch.nn import CrossEntropyLoss
8
+ from transformers import (AutoModel, GenerationConfig, LlamaForCausalLM,
9
+ LlamaTokenizer)
10
+ from transformers.modeling_outputs import CausalLMOutputWithPast
11
+ from transformers.modeling_utils import PreTrainedModel
12
+ from transformers.utils import ModelOutput, logging
13
+
14
+ from .configuration_skywork_chat import SkyworkChatConfig
15
+ from .conversation import get_conv_template
16
+ from .modeling_skywork_vit import SkyworkVisionModel, has_flash_attn
17
+ from .modeling_skywork_lm2 import SkyworkLM2ForCausalLM
18
+
19
+ from transformers import Qwen2Config, Qwen2ForCausalLM
20
+
21
+ logger = logging.get_logger(__name__)
22
+
23
+
24
+ def version_cmp(v1, v2, op='eq'):
25
+ import operator
26
+
27
+ from packaging import version
28
+ op_func = getattr(operator, op)
29
+ return op_func(version.parse(v1), version.parse(v2))
30
+
31
+
32
+ class SkyworkChatModel(PreTrainedModel):
33
+ config_class = SkyworkChatConfig
34
+ main_input_name = 'pixel_values'
35
+ base_model_prefix = 'language_model'
36
+ _supports_flash_attn_2 = True
37
+ _no_split_modules = ['SkyworkVisionModel', 'LlamaDecoderLayer', 'SkyworkLM2DecoderLayer']
38
+
39
+ def __init__(self, config: SkyworkChatConfig, vision_model=None, language_model=None, use_flash_attn=True):
40
+ super().__init__(config)
41
+
42
+ assert version_cmp(transformers.__version__, '4.36.2', 'ge')
43
+ image_size = config.force_image_size or config.vision_config.image_size
44
+ patch_size = config.vision_config.patch_size
45
+ self.patch_size = patch_size
46
+ self.select_layer = config.select_layer
47
+ self.template = config.template
48
+ self.num_image_token = int((image_size // patch_size) ** 2 * (config.downsample_ratio ** 2))
49
+ self.downsample_ratio = config.downsample_ratio
50
+ self.ps_version = config.ps_version
51
+ use_flash_attn = use_flash_attn if has_flash_attn else False
52
+ config.vision_config.use_flash_attn = True if use_flash_attn else False
53
+ config.llm_config.attn_implementation = 'flash_attention_2' if use_flash_attn else 'eager'
54
+
55
+ logger.info(f'num_image_token: {self.num_image_token}')
56
+ logger.info(f'ps_version: {self.ps_version}')
57
+ if vision_model is not None:
58
+ self.vision_model = vision_model
59
+ else:
60
+ self.vision_model = SkyworkVisionModel(config.vision_config)
61
+ if language_model is not None:
62
+ self.language_model = language_model
63
+ else:
64
+ if config.llm_config.architectures[0] == 'LlamaForCausalLM':
65
+ self.language_model = LlamaForCausalLM(config.llm_config)
66
+ elif config.llm_config.architectures[0] == 'SkyworkLM2ForCausalLM':
67
+ self.language_model = SkyworkLM2ForCausalLM(config.llm_config)
68
+ elif config.llm_config.architectures[0] == 'Qwen2ForCausalLM':
69
+ self.language_model = Qwen2ForCausalLM(config.llm_config)
70
+ else:
71
+ raise NotImplementedError(f'{config.llm_config.architectures[0]} is not implemented.')
72
+
73
+ vit_hidden_size = config.vision_config.hidden_size
74
+ llm_hidden_size = config.llm_config.hidden_size
75
+
76
+ self.mlp1 = nn.Sequential(
77
+ nn.LayerNorm(vit_hidden_size * int(1 / self.downsample_ratio) ** 2),
78
+ nn.Linear(vit_hidden_size * int(1 / self.downsample_ratio) ** 2, llm_hidden_size),
79
+ nn.GELU(),
80
+ nn.Linear(llm_hidden_size, llm_hidden_size)
81
+ )
82
+
83
+ self.img_context_token_id = None
84
+ self.conv_template = get_conv_template(self.template)
85
+ self.system_message = self.conv_template.system_message
86
+
87
+ def forward(
88
+ self,
89
+ pixel_values: torch.FloatTensor,
90
+ input_ids: torch.LongTensor = None,
91
+ attention_mask: Optional[torch.Tensor] = None,
92
+ position_ids: Optional[torch.LongTensor] = None,
93
+ image_flags: Optional[torch.LongTensor] = None,
94
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
95
+ labels: Optional[torch.LongTensor] = None,
96
+ use_cache: Optional[bool] = None,
97
+ output_attentions: Optional[bool] = None,
98
+ output_hidden_states: Optional[bool] = None,
99
+ return_dict: Optional[bool] = None,
100
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
101
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
102
+
103
+ image_flags = image_flags.squeeze(-1)
104
+ input_embeds = self.language_model.get_input_embeddings()(input_ids).clone()
105
+ print(f"pixel_values shape: {pixel_values.shape}")
106
+ vit_embeds = self.extract_feature(pixel_values)
107
+ print(f"vit_embeds shape: {vit_embeds.shape}")
108
+ vit_embeds = vit_embeds[image_flags == 1]
109
+ vit_batch_size = pixel_values.shape[0]
110
+
111
+ B, N, C = input_embeds.shape
112
+ input_embeds = input_embeds.reshape(B * N, C)
113
+
114
+ if torch.distributed.get_rank() == 0 and torch.distributed.is_initialized():
115
+ print(f'dynamic ViT batch size: {vit_batch_size}, images per sample: {vit_batch_size / B}, dynamic token length: {N}')
116
+
117
+ input_ids = input_ids.reshape(B * N)
118
+ selected = (input_ids == self.img_context_token_id)
119
+ print(f"input_embeds shape: {input_embeds.shape}, self.img_context_token_id: {self.img_context_token_id}, input_ids shape: {input_ids.shape}, selected: {selected}, C: {C}, vit_embeds shape: {vit_embeds.shape}")
120
+ try:
121
+ input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds.reshape(-1, C)
122
+ except Exception as e:
123
+ vit_embeds = vit_embeds.reshape(-1, C)
124
+ print(f'warning: {e}, input_embeds[selected].shape={input_embeds[selected].shape}, '
125
+ f'vit_embeds.shape={vit_embeds.shape}')
126
+ n_token = selected.sum()
127
+ input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds[:n_token]
128
+
129
+ input_embeds = input_embeds.reshape(B, N, C)
130
+
131
+ outputs = self.language_model(
132
+ inputs_embeds=input_embeds,
133
+ attention_mask=attention_mask,
134
+ position_ids=position_ids,
135
+ past_key_values=past_key_values,
136
+ use_cache=use_cache,
137
+ output_attentions=output_attentions,
138
+ output_hidden_states=output_hidden_states,
139
+ return_dict=return_dict,
140
+ )
141
+ logits = outputs.logits
142
+
143
+ loss = None
144
+ if labels is not None:
145
+ # Shift so that tokens < n predict n
146
+ shift_logits = logits[..., :-1, :].contiguous()
147
+ shift_labels = labels[..., 1:].contiguous()
148
+ # Flatten the tokens
149
+ loss_fct = CrossEntropyLoss()
150
+ shift_logits = shift_logits.view(-1, self.language_model.config.vocab_size)
151
+ shift_labels = shift_labels.view(-1)
152
+ # Enable model parallelism
153
+ shift_labels = shift_labels.to(shift_logits.device)
154
+ loss = loss_fct(shift_logits, shift_labels)
155
+
156
+ if not return_dict:
157
+ output = (logits,) + outputs[1:]
158
+ return (loss,) + output if loss is not None else output
159
+
160
+ return CausalLMOutputWithPast(
161
+ loss=loss,
162
+ logits=logits,
163
+ past_key_values=outputs.past_key_values,
164
+ hidden_states=outputs.hidden_states,
165
+ attentions=outputs.attentions,
166
+ )
167
+
168
+ def pixel_shuffle(self, x, scale_factor=0.5):
169
+ n, w, h, c = x.size()
170
+ # N, W, H, C --> N, W, H * scale, C // scale
171
+ x = x.view(n, w, int(h * scale_factor), int(c / scale_factor))
172
+ # N, W, H * scale, C // scale --> N, H * scale, W, C // scale
173
+ x = x.permute(0, 2, 1, 3).contiguous()
174
+ # N, H * scale, W, C // scale --> N, H * scale, W * scale, C // (scale ** 2)
175
+ x = x.view(n, int(h * scale_factor), int(w * scale_factor),
176
+ int(c / (scale_factor * scale_factor)))
177
+ if self.ps_version == 'v1':
178
+ warnings.warn("In ps_version 'v1', the height and width have not been swapped back, "
179
+ 'which results in a transposed image.')
180
+ else:
181
+ x = x.permute(0, 2, 1, 3).contiguous()
182
+ return x
183
+
184
+ def extract_feature(self, pixel_values):
185
+ if self.select_layer == -1:
186
+ vit_embeds = self.vision_model(
187
+ pixel_values=pixel_values,
188
+ output_hidden_states=False,
189
+ return_dict=True).last_hidden_state
190
+ else:
191
+ vit_embeds = self.vision_model(
192
+ pixel_values=pixel_values,
193
+ output_hidden_states=True,
194
+ return_dict=True).hidden_states[self.select_layer]
195
+ vit_embeds = vit_embeds[:, 1:, :]
196
+
197
+ h = w = int(vit_embeds.shape[1] ** 0.5)
198
+ vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1)
199
+ vit_embeds = self.pixel_shuffle(vit_embeds, scale_factor=self.downsample_ratio)
200
+ vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1])
201
+ vit_embeds = self.mlp1(vit_embeds)
202
+ return vit_embeds
203
+
204
+ def batch_chat(self, tokenizer, pixel_values, questions, generation_config, num_patches_list=None,
205
+ history=None, return_history=False, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>',
206
+ IMG_CONTEXT_TOKEN='<IMG_CONTEXT>', verbose=False, image_counts=None):
207
+ if history is not None or return_history:
208
+ print('Now multi-turn chat is not supported in batch_chat.')
209
+ raise NotImplementedError
210
+
211
+ if image_counts is not None:
212
+ num_patches_list = image_counts
213
+ print('Warning: `image_counts` is deprecated. Please use `num_patches_list` instead.')
214
+
215
+ img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
216
+ self.img_context_token_id = img_context_token_id
217
+
218
+
219
+ if verbose and pixel_values is not None:
220
+ image_bs = pixel_values.shape[0]
221
+ print(f'dynamic ViT batch size: {image_bs}')
222
+
223
+ queries = []
224
+ for idx, num_patches in enumerate(num_patches_list):
225
+ question = questions[idx]
226
+ if pixel_values is not None and '<image>' not in question:
227
+ question = '<image>\n' + question
228
+ template = get_conv_template(self.template)
229
+ template.system_message = self.system_message
230
+ template.append_message(template.roles[0], question)
231
+ template.append_message(template.roles[1], None)
232
+ query = template.get_prompt()
233
+
234
+ image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
235
+ query = query.replace('<image>', image_tokens, 1)
236
+ queries.append(query)
237
+
238
+ tokenizer.padding_side = 'left'
239
+ model_inputs = tokenizer(queries, return_tensors='pt', padding=True)
240
+ input_ids = model_inputs['input_ids'].to(self.device)
241
+ attention_mask = model_inputs['attention_mask'].to(self.device)
242
+ eos_token_id = tokenizer.convert_tokens_to_ids(template.sep.strip())
243
+ generation_config['eos_token_id'] = eos_token_id
244
+ generation_output = self.generate(
245
+ pixel_values=pixel_values,
246
+ input_ids=input_ids,
247
+ attention_mask=attention_mask,
248
+ **generation_config
249
+ )
250
+ responses = tokenizer.batch_decode(generation_output, skip_special_tokens=True)
251
+ responses = [response.split(template.sep.strip())[0].strip() for response in responses]
252
+ return responses
253
+
254
+ def chat(self, tokenizer, pixel_values, question, generation_config, history=None, return_history=False,
255
+ num_patches_list=None, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>', IMG_CONTEXT_TOKEN='<IMG_CONTEXT>',
256
+ verbose=False):
257
+
258
+ if history is None and pixel_values is not None and '<image>' not in question:
259
+ question = '<image>\n' + question
260
+
261
+ if num_patches_list is None:
262
+ num_patches_list = [pixel_values.shape[0]] if pixel_values is not None else []
263
+ assert pixel_values is None or len(pixel_values) == sum(num_patches_list)
264
+
265
+ img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
266
+ self.img_context_token_id = img_context_token_id
267
+
268
+ template = get_conv_template(self.template)
269
+ template.system_message = self.system_message
270
+ eos_token_id = tokenizer.convert_tokens_to_ids(template.sep.strip())
271
+
272
+
273
+ history = [] if history is None else history
274
+ for (old_question, old_answer) in history:
275
+ template.append_message(template.roles[0], old_question)
276
+ template.append_message(template.roles[1], old_answer)
277
+ template.append_message(template.roles[0], question)
278
+ template.append_message(template.roles[1], None)
279
+ query = template.get_prompt()
280
+
281
+
282
+ if verbose and pixel_values is not None:
283
+ image_bs = pixel_values.shape[0]
284
+ print(f'dynamic ViT batch size: {image_bs}')
285
+
286
+ for num_patches in num_patches_list:
287
+ image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
288
+ query = query.replace('<image>', image_tokens, 1)
289
+
290
+
291
+ model_inputs = tokenizer(query, return_tensors='pt')
292
+ input_ids = model_inputs['input_ids'].to(self.device)
293
+ attention_mask = model_inputs['attention_mask'].to(self.device)
294
+ generation_config['eos_token_id'] = eos_token_id
295
+ generation_output = self.generate(
296
+ pixel_values=pixel_values,
297
+ input_ids=input_ids,
298
+ attention_mask=attention_mask,
299
+ **generation_config
300
+ )
301
+ response = tokenizer.batch_decode(generation_output, skip_special_tokens=True)[0]
302
+ response = response.split(template.sep.strip())[0].strip()
303
+ history.append((question, response))
304
+
305
+ if return_history:
306
+ return response, history
307
+ else:
308
+ query_to_print = query.replace(IMG_CONTEXT_TOKEN, '')
309
+ query_to_print = query_to_print.replace(f'{IMG_START_TOKEN}{IMG_END_TOKEN}', '<image>')
310
+ if verbose:
311
+ print(query_to_print, response)
312
+ return response
313
+
314
+ @torch.no_grad()
315
+ def generate(
316
+ self,
317
+ pixel_values: Optional[torch.FloatTensor] = None,
318
+ input_ids: Optional[torch.FloatTensor] = None,
319
+ attention_mask: Optional[torch.LongTensor] = None,
320
+ visual_features: Optional[torch.FloatTensor] = None,
321
+ generation_config: Optional[GenerationConfig] = None,
322
+ output_hidden_states: Optional[bool] = None,
323
+ **generate_kwargs,
324
+ ) -> torch.LongTensor:
325
+
326
+ assert self.img_context_token_id is not None
327
+ if pixel_values is not None:
328
+ if visual_features is not None:
329
+ vit_embeds = visual_features
330
+ else:
331
+ vit_embeds = self.extract_feature(pixel_values)
332
+ input_embeds = self.language_model.get_input_embeddings()(input_ids)
333
+ B, N, C = input_embeds.shape
334
+ input_embeds = input_embeds.reshape(B * N, C)
335
+
336
+ input_ids = input_ids.reshape(B * N)
337
+ selected = (input_ids == self.img_context_token_id)
338
+
339
+ assert selected.sum() != 0
340
+ input_embeds[selected] = vit_embeds.reshape(-1, C).to(input_embeds.device)
341
+
342
+ input_embeds = input_embeds.reshape(B, N, C)
343
+ else:
344
+ input_embeds = self.language_model.get_input_embeddings()(input_ids)
345
+
346
+
347
+ outputs = self.language_model.generate(
348
+ inputs_embeds=input_embeds,
349
+ attention_mask=attention_mask,
350
+ generation_config=generation_config,
351
+ output_hidden_states=output_hidden_states,
352
+ use_cache=True,
353
+ **generate_kwargs,
354
+ )
355
+
356
+ return outputs
modeling_skywork_lm2.py ADDED
@@ -0,0 +1,1403 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) The Skywork team and The HuggingFace Inc. team. All rights reserved.
2
+ #
3
+ # This code is based on transformers/src/transformers/models/llama/modeling_llama.py
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """ PyTorch SkyworkLM2 model."""
17
+ import math
18
+ import queue
19
+ import threading
20
+ import warnings
21
+ from typing import List, Optional, Tuple, Union
22
+
23
+ import torch
24
+ import torch.nn.functional as F
25
+ import torch.utils.checkpoint
26
+ from einops import rearrange
27
+ from torch import nn
28
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
29
+ from transformers.activations import ACT2FN
30
+ from transformers.modeling_outputs import (BaseModelOutputWithPast,
31
+ CausalLMOutputWithPast,
32
+ SequenceClassifierOutputWithPast)
33
+ from transformers.modeling_utils import PreTrainedModel
34
+ from transformers.utils import (add_start_docstrings,
35
+ add_start_docstrings_to_model_forward, logging,
36
+ replace_return_docstrings)
37
+
38
+ try:
39
+ from transformers.generation.streamers import BaseStreamer
40
+ except:
41
+ BaseStreamer = None
42
+
43
+ from .configuration_skywork_lm2 import SkyworkLM2Config
44
+
45
+ logger = logging.get_logger(__name__)
46
+
47
+ _CONFIG_FOR_DOC = 'SkyworkLM2Config'
48
+
49
+ flash_attn_func, flash_attn_varlen_func = None, None
50
+ pad_input, index_first_axis, unpad_input = None, None, None
51
+ try:
52
+ from flash_attn import flash_attn_func as _flash_attn_func
53
+ from flash_attn import flash_attn_varlen_func as _flash_attn_varlen_func
54
+ from flash_attn.bert_padding import index_first_axis as _index_first_axis
55
+ from flash_attn.bert_padding import pad_input as _pad_input
56
+ from flash_attn.bert_padding import unpad_input as _unpad_input
57
+
58
+ flash_attn_func, flash_attn_varlen_func = _flash_attn_func, _flash_attn_varlen_func
59
+ pad_input, index_first_axis, unpad_input = _pad_input, _index_first_axis, _unpad_input
60
+ has_flash_attn = True
61
+ except:
62
+ has_flash_attn = False
63
+
64
+
65
+ def _import_flash_attn():
66
+ global flash_attn_func, flash_attn_varlen_func
67
+ global pad_input, index_first_axis, unpad_input
68
+ try:
69
+ from flash_attn import flash_attn_func as _flash_attn_func
70
+ from flash_attn import \
71
+ flash_attn_varlen_func as _flash_attn_varlen_func
72
+ from flash_attn.bert_padding import \
73
+ index_first_axis as _index_first_axis
74
+ from flash_attn.bert_padding import pad_input as _pad_input
75
+ from flash_attn.bert_padding import unpad_input as _unpad_input
76
+ flash_attn_func, flash_attn_varlen_func = _flash_attn_func, _flash_attn_varlen_func
77
+ pad_input, index_first_axis, unpad_input = _pad_input, _index_first_axis, _unpad_input
78
+ except ImportError:
79
+ raise ImportError('flash_attn is not installed.')
80
+
81
+
82
+ # Copied from transformers.models.llama.modeling_llama._get_unpad_data
83
+ def _get_unpad_data(attention_mask):
84
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
85
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
86
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
87
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
88
+ return (
89
+ indices,
90
+ cu_seqlens,
91
+ max_seqlen_in_batch,
92
+ )
93
+
94
+
95
+ # Copied from transformers.models.bart.modeling_bart._make_causal_mask
96
+ def _make_causal_mask(
97
+ input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
98
+ ):
99
+ """
100
+ Make causal mask used for bi-directional self-attention.
101
+ """
102
+ bsz, tgt_len = input_ids_shape
103
+ mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device)
104
+ mask_cond = torch.arange(mask.size(-1), device=device)
105
+ mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
106
+ mask = mask.to(dtype)
107
+
108
+ if past_key_values_length > 0:
109
+ mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
110
+ return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
111
+
112
+
113
+ # Copied from transformers.models.bart.modeling_bart._expand_mask
114
+ def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
115
+ """
116
+ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
117
+ """
118
+ bsz, src_len = mask.size()
119
+ tgt_len = tgt_len if tgt_len is not None else src_len
120
+
121
+ expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
122
+
123
+ inverted_mask = 1.0 - expanded_mask
124
+
125
+ return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
126
+
127
+
128
+ # Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->SkyworkLM2
129
+ class SkyworkLM2RMSNorm(nn.Module):
130
+ def __init__(self, hidden_size, eps=1e-6):
131
+ """
132
+ SkyworkLM2RMSNorm is equivalent to T5LayerNorm
133
+ """
134
+ super().__init__()
135
+ self.weight = nn.Parameter(torch.ones(hidden_size))
136
+ self.variance_epsilon = eps
137
+
138
+ def forward(self, hidden_states):
139
+ input_dtype = hidden_states.dtype
140
+ hidden_states = hidden_states.to(torch.float32)
141
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
142
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
143
+ return self.weight * hidden_states.to(input_dtype)
144
+
145
+
146
+ # Copied from transformers.model.llama.modeling_llama.LlamaRotaryEmbedding with Llama->SkyworkLM2
147
+ class SkyworkLM2RotaryEmbedding(nn.Module):
148
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
149
+ super().__init__()
150
+
151
+ self.dim = dim
152
+ self.max_position_embeddings = max_position_embeddings
153
+ self.base = base
154
+ inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
155
+ self.register_buffer('inv_freq', inv_freq, persistent=False)
156
+
157
+ # Build here to make `torch.jit.trace` work.
158
+ self._set_cos_sin_cache(
159
+ seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
160
+ )
161
+
162
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
163
+ self.max_seq_len_cached = seq_len
164
+ t = torch.arange(self.max_seq_len_cached, device=device).to(dtype=self.inv_freq.dtype)
165
+
166
+ freqs = torch.einsum('i,j->ij', t, self.inv_freq)
167
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
168
+ emb = torch.cat((freqs, freqs), dim=-1)
169
+ self.register_buffer('cos_cached', emb.cos().to(dtype), persistent=False)
170
+ self.register_buffer('sin_cached', emb.sin().to(dtype), persistent=False)
171
+
172
+ def forward(self, x, seq_len=None):
173
+ # x: [bs, num_attention_heads, seq_len, head_size]
174
+ if seq_len > self.max_seq_len_cached:
175
+ self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=torch.float32)
176
+
177
+ return (
178
+ self.cos_cached[:seq_len].to(dtype=x.dtype),
179
+ self.sin_cached[:seq_len].to(dtype=x.dtype),
180
+ )
181
+
182
+
183
+ # Copied from transformers.model.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding with Llama->SkyworkLM2
184
+ class SkyworkLM2LinearScalingRotaryEmbedding(SkyworkLM2RotaryEmbedding):
185
+
186
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
187
+ self.scaling_factor = scaling_factor
188
+ super().__init__(dim, max_position_embeddings, base, device)
189
+
190
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
191
+ self.max_seq_len_cached = seq_len
192
+ t = torch.arange(self.max_seq_len_cached, device=device).to(dtype=self.inv_freq.dtype)
193
+ t = t / self.scaling_factor
194
+
195
+ freqs = torch.einsum('i,j->ij', t, self.inv_freq)
196
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
197
+ emb = torch.cat((freqs, freqs), dim=-1)
198
+ self.register_buffer('cos_cached', emb.cos().to(dtype), persistent=False)
199
+ self.register_buffer('sin_cached', emb.sin().to(dtype), persistent=False)
200
+
201
+
202
+ # Copied from transformers.model.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->SkyworkLM2
203
+ class SkyworkLM2DynamicNTKScalingRotaryEmbedding(SkyworkLM2RotaryEmbedding):
204
+
205
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
206
+ self.scaling_factor = scaling_factor
207
+ super().__init__(dim, max_position_embeddings, base, device)
208
+
209
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
210
+ self.max_seq_len_cached = seq_len
211
+
212
+ if seq_len > self.max_position_embeddings:
213
+ base = self.base * (
214
+ (self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
215
+ ) ** (self.dim / (self.dim - 2))
216
+ inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
217
+ self.register_buffer('inv_freq', inv_freq, persistent=False)
218
+
219
+ t = torch.arange(self.max_seq_len_cached, device=device).to(dtype=self.inv_freq.dtype)
220
+
221
+ freqs = torch.einsum('i,j->ij', t, self.inv_freq)
222
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
223
+ emb = torch.cat((freqs, freqs), dim=-1)
224
+ self.register_buffer('cos_cached', emb.cos().to(dtype), persistent=False)
225
+ self.register_buffer('sin_cached', emb.sin().to(dtype), persistent=False)
226
+
227
+
228
+ # Copied from transformers.model.llama.modeling_llama.rotate_half
229
+ def rotate_half(x):
230
+ """Rotates half the hidden dims of the input."""
231
+ x1 = x[..., : x.shape[-1] // 2]
232
+ x2 = x[..., x.shape[-1] // 2 :]
233
+ return torch.cat((-x2, x1), dim=-1)
234
+
235
+
236
+ # Copied from transformers.model.llama.modeling_llama.apply_rotary_pos_emb
237
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
238
+ """Applies Rotary Position Embedding to the query and key tensors."""
239
+ cos = cos[position_ids].unsqueeze(unsqueeze_dim)
240
+ sin = sin[position_ids].unsqueeze(unsqueeze_dim)
241
+ q_embed = (q * cos) + (rotate_half(q) * sin)
242
+ k_embed = (k * cos) + (rotate_half(k) * sin)
243
+ return q_embed, k_embed
244
+
245
+
246
+ class SkyworkLM2MLP(nn.Module):
247
+ def __init__(self, config):
248
+ super().__init__()
249
+ self.config = config
250
+ self.hidden_size = config.hidden_size
251
+ self.intermediate_size = config.intermediate_size
252
+ self.w1 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
253
+ self.w3 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
254
+ self.w2 = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
255
+ self.act_fn = ACT2FN[config.hidden_act]
256
+
257
+ def forward(self, x):
258
+ down_proj = self.w2(self.act_fn(self.w1(x)) * self.w3(x))
259
+
260
+ return down_proj
261
+
262
+
263
+ # Copied from transformers.model.llama.modeling_llama.repeat_kv
264
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
265
+ """
266
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
267
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
268
+ """
269
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
270
+ if n_rep == 1:
271
+ return hidden_states
272
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
273
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
274
+
275
+
276
+ # Modified from transformers.model.llama.modeling_llama.LlamaAttention
277
+ class SkyworkLM2Attention(nn.Module):
278
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
279
+
280
+ def __init__(self, config: SkyworkLM2Config):
281
+ super().__init__()
282
+ self.config = config
283
+ self.hidden_size = config.hidden_size
284
+ self.num_heads = config.num_attention_heads
285
+ self.head_dim = self.hidden_size // self.num_heads
286
+ self.num_key_value_heads = config.num_key_value_heads
287
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
288
+ self.max_position_embeddings = config.max_position_embeddings
289
+ self.is_causal = True
290
+
291
+ if (self.head_dim * self.num_heads) != self.hidden_size:
292
+ raise ValueError(
293
+ f'hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}'
294
+ f' and `num_heads`: {self.num_heads}).'
295
+ )
296
+
297
+ self.wqkv = nn.Linear(
298
+ self.hidden_size,
299
+ (self.num_heads + 2 * self.num_key_value_heads) * self.head_dim,
300
+ bias=config.bias,
301
+ )
302
+
303
+ self.wo = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.bias)
304
+ self._init_rope()
305
+
306
+ def _init_rope(self):
307
+ if self.config.rope_scaling is None:
308
+ self.rotary_emb = SkyworkLM2RotaryEmbedding(
309
+ self.head_dim,
310
+ max_position_embeddings=self.max_position_embeddings,
311
+ base=self.config.rope_theta,
312
+ )
313
+ else:
314
+ scaling_type = self.config.rope_scaling['type']
315
+ scaling_factor = self.config.rope_scaling['factor']
316
+ if scaling_type == 'dynamic':
317
+ self.rotary_emb = SkyworkLM2DynamicNTKScalingRotaryEmbedding(
318
+ self.head_dim,
319
+ max_position_embeddings=self.max_position_embeddings,
320
+ base=self.config.rope_theta,
321
+ scaling_factor=scaling_factor,
322
+ )
323
+ elif scaling_type == 'linear':
324
+ self.rotary_emb = SkyworkLM2LinearScalingRotaryEmbedding(
325
+ self.head_dim,
326
+ max_position_embeddings=self.max_position_embeddings,
327
+ base=self.config.rope_theta,
328
+ scaling_factor=scaling_factor,
329
+ )
330
+ else:
331
+ raise ValueError("Currently we only support rotary embedding's type being 'dynamic' or 'linear'.")
332
+ return self.rotary_emb
333
+
334
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
335
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
336
+
337
+ def forward(
338
+ self,
339
+ hidden_states: torch.Tensor,
340
+ attention_mask: Optional[torch.Tensor] = None,
341
+ position_ids: Optional[torch.LongTensor] = None,
342
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
343
+ output_attentions: bool = False,
344
+ use_cache: bool = False,
345
+ **kwargs,
346
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
347
+ if 'padding_mask' in kwargs:
348
+ warnings.warn(
349
+ 'Passing `padding_mask` is deprecated and will be removed in v4.37. '
350
+ 'Please make sure use `attention_mask` instead.`'
351
+ )
352
+
353
+ bsz, q_len, _ = hidden_states.size()
354
+
355
+ qkv_states = self.wqkv(hidden_states)
356
+
357
+ qkv_states = rearrange(
358
+ qkv_states,
359
+ 'b q (h gs d) -> b q h gs d',
360
+ gs=2 + self.num_key_value_groups,
361
+ d=self.head_dim,
362
+ )
363
+
364
+ query_states = qkv_states[..., : self.num_key_value_groups, :]
365
+ query_states = rearrange(query_states, 'b q h gs d -> b q (h gs) d')
366
+ key_states = qkv_states[..., -2, :]
367
+ value_states = qkv_states[..., -1, :]
368
+
369
+ query_states = query_states.transpose(1, 2)
370
+ key_states = key_states.transpose(1, 2)
371
+ value_states = value_states.transpose(1, 2)
372
+
373
+ kv_seq_len = key_states.shape[-2]
374
+ if past_key_value is not None:
375
+ kv_seq_len += past_key_value[0].shape[-2]
376
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
377
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
378
+
379
+ if past_key_value is not None:
380
+ # reuse k, v, self_attention
381
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
382
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
383
+
384
+ past_key_value = (key_states, value_states) if use_cache else None
385
+
386
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
387
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
388
+
389
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
390
+
391
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
392
+ raise ValueError(
393
+ f'Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is'
394
+ f' {attn_weights.size()}'
395
+ )
396
+
397
+ if attention_mask is not None:
398
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
399
+ raise ValueError(
400
+ f'Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}'
401
+ )
402
+ attn_weights = attn_weights + attention_mask
403
+
404
+ # upcast attention to fp32
405
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
406
+ attn_output = torch.matmul(attn_weights, value_states)
407
+
408
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
409
+ raise ValueError(
410
+ f'`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is'
411
+ f' {attn_output.size()}'
412
+ )
413
+
414
+ attn_output = attn_output.transpose(1, 2).contiguous()
415
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
416
+
417
+ attn_output = self.wo(attn_output)
418
+
419
+ if not output_attentions:
420
+ attn_weights = None
421
+
422
+ return attn_output, attn_weights, past_key_value
423
+
424
+
425
+ # Modified from transformers.model.llama.modeling_llama.SkyworkLM2FlashAttention2
426
+ class SkyworkLM2FlashAttention2(SkyworkLM2Attention):
427
+
428
+ def forward(
429
+ self,
430
+ hidden_states: torch.Tensor,
431
+ attention_mask: Optional[torch.LongTensor] = None,
432
+ position_ids: Optional[torch.LongTensor] = None,
433
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
434
+ output_attentions: bool = False,
435
+ use_cache: bool = False,
436
+ **kwargs,
437
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
438
+ if 'padding_mask' in kwargs:
439
+ warnings.warn(
440
+ 'Passing `padding_mask` is deprecated and will be removed in v4.37. '
441
+ 'Please make sure use `attention_mask` instead.`'
442
+ )
443
+
444
+ # overwrite attention_mask with padding_mask
445
+ attention_mask = kwargs.pop('padding_mask')
446
+
447
+ output_attentions = False
448
+
449
+ bsz, q_len, _ = hidden_states.size()
450
+
451
+ qkv_states = self.wqkv(hidden_states)
452
+
453
+ qkv_states = rearrange(
454
+ qkv_states,
455
+ 'b q (h gs d) -> b q h gs d',
456
+ gs=2 + self.num_key_value_groups,
457
+ d=self.head_dim,
458
+ )
459
+
460
+ query_states = qkv_states[..., : self.num_key_value_groups, :]
461
+ query_states = rearrange(query_states, 'b q h gs d -> b q (h gs) d')
462
+ key_states = qkv_states[..., -2, :]
463
+ value_states = qkv_states[..., -1, :]
464
+
465
+ query_states = query_states.transpose(1, 2)
466
+ key_states = key_states.transpose(1, 2)
467
+ value_states = value_states.transpose(1, 2)
468
+
469
+ kv_seq_len = key_states.shape[-2]
470
+ if past_key_value is not None:
471
+ kv_seq_len += past_key_value[0].shape[-2]
472
+
473
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
474
+
475
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
476
+
477
+ if past_key_value is not None:
478
+ # reuse k, v, self_attention
479
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
480
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
481
+
482
+ past_key_value = (key_states, value_states) if use_cache else None
483
+
484
+ query_states = query_states.transpose(1, 2)
485
+ key_states = key_states.transpose(1, 2)
486
+ value_states = value_states.transpose(1, 2)
487
+
488
+ attn_output = self._flash_attention_forward(
489
+ query_states, key_states, value_states, attention_mask, q_len
490
+ )
491
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
492
+ attn_output = self.wo(attn_output)
493
+
494
+ if not output_attentions:
495
+ attn_weights = None
496
+
497
+ return attn_output, attn_weights, past_key_value
498
+
499
+ def _flash_attention_forward(
500
+ self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
501
+ ):
502
+ """
503
+ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
504
+ first unpad the input, then computes the attention scores and pad the final attention scores.
505
+
506
+ Args:
507
+ query_states (`torch.Tensor`):
508
+ Input query states to be passed to Flash Attention API
509
+ key_states (`torch.Tensor`):
510
+ Input key states to be passed to Flash Attention API
511
+ value_states (`torch.Tensor`):
512
+ Input value states to be passed to Flash Attention API
513
+ attention_mask (`torch.Tensor`):
514
+ The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
515
+ position of padding tokens and 1 for the position of non-padding tokens.
516
+ dropout (`int`, *optional*):
517
+ Attention dropout
518
+ softmax_scale (`float`, *optional*):
519
+ The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
520
+ """
521
+ # Contains at least one padding token in the sequence
522
+ causal = self.is_causal and query_length != 1
523
+ if attention_mask is not None:
524
+ batch_size = query_states.shape[0]
525
+ query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._unpad_input(
526
+ query_states, key_states, value_states, attention_mask, query_length
527
+ )
528
+
529
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
530
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
531
+
532
+ attn_output_unpad = flash_attn_varlen_func(
533
+ query_states,
534
+ key_states,
535
+ value_states,
536
+ cu_seqlens_q=cu_seqlens_q,
537
+ cu_seqlens_k=cu_seqlens_k,
538
+ max_seqlen_q=max_seqlen_in_batch_q,
539
+ max_seqlen_k=max_seqlen_in_batch_k,
540
+ dropout_p=dropout,
541
+ softmax_scale=softmax_scale,
542
+ causal=causal,
543
+ )
544
+
545
+ attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
546
+ else:
547
+ attn_output = flash_attn_func(
548
+ query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
549
+ )
550
+
551
+ return attn_output
552
+
553
+ def _unpad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
554
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
555
+ batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
556
+
557
+ key_layer = index_first_axis(
558
+ key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
559
+ )
560
+ value_layer = index_first_axis(
561
+ value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
562
+ )
563
+
564
+ if query_length == kv_seq_len:
565
+ query_layer = index_first_axis(
566
+ query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
567
+ )
568
+ cu_seqlens_q = cu_seqlens_k
569
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
570
+ indices_q = indices_k
571
+ elif query_length == 1:
572
+ max_seqlen_in_batch_q = 1
573
+ cu_seqlens_q = torch.arange(
574
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
575
+ ) # There is a memcpy here, that is very bad.
576
+ indices_q = cu_seqlens_q[:-1]
577
+ query_layer = query_layer.squeeze(1)
578
+ else:
579
+ # The -q_len: slice assumes left padding.
580
+ attention_mask = attention_mask[:, -query_length:]
581
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
582
+
583
+ return (
584
+ query_layer,
585
+ key_layer,
586
+ value_layer,
587
+ indices_q.to(torch.int64),
588
+ (cu_seqlens_q, cu_seqlens_k),
589
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
590
+ )
591
+
592
+
593
+ INTERNLM2_ATTENTION_CLASSES = {
594
+ 'eager': SkyworkLM2Attention,
595
+ 'flash_attention_2': SkyworkLM2FlashAttention2,
596
+ }
597
+
598
+
599
+ # Modified from transformers.model.llama.modeling_llama.LlamaDecoderLayer
600
+ class SkyworkLM2DecoderLayer(nn.Module):
601
+ def __init__(self, config: SkyworkLM2Config):
602
+ super().__init__()
603
+ self.hidden_size = config.hidden_size
604
+
605
+ self.attention = INTERNLM2_ATTENTION_CLASSES[config.attn_implementation](config=config)
606
+
607
+ self.feed_forward = SkyworkLM2MLP(config)
608
+ self.attention_norm = SkyworkLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
609
+ self.ffn_norm = SkyworkLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
610
+
611
+ def forward(
612
+ self,
613
+ hidden_states: torch.Tensor,
614
+ attention_mask: Optional[torch.Tensor] = None,
615
+ position_ids: Optional[torch.LongTensor] = None,
616
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
617
+ output_attentions: Optional[bool] = False,
618
+ use_cache: Optional[bool] = False,
619
+ **kwargs,
620
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
621
+ """
622
+ Args:
623
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
624
+ attention_mask (`torch.FloatTensor`, *optional*):
625
+ attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
626
+ query_sequence_length, key_sequence_length)` if default attention is used.
627
+ output_attentions (`bool`, *optional*):
628
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
629
+ returned tensors for more detail.
630
+ use_cache (`bool`, *optional*):
631
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
632
+ (see `past_key_values`).
633
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
634
+ """
635
+ if 'padding_mask' in kwargs:
636
+ warnings.warn(
637
+ 'Passing `padding_mask` is deprecated and will be removed in v4.37. '
638
+ 'Please make sure use `attention_mask` instead.`'
639
+ )
640
+
641
+ residual = hidden_states
642
+
643
+ hidden_states = self.attention_norm(hidden_states)
644
+
645
+ # Self Attention
646
+ hidden_states, self_attn_weights, present_key_value = self.attention(
647
+ hidden_states=hidden_states,
648
+ attention_mask=attention_mask,
649
+ position_ids=position_ids,
650
+ past_key_value=past_key_value,
651
+ output_attentions=output_attentions,
652
+ use_cache=use_cache,
653
+ **kwargs,
654
+ )
655
+ hidden_states = residual + hidden_states
656
+
657
+ # Fully Connected
658
+ residual = hidden_states
659
+ hidden_states = self.ffn_norm(hidden_states)
660
+ hidden_states = self.feed_forward(hidden_states)
661
+ hidden_states = residual + hidden_states
662
+
663
+ outputs = (hidden_states,)
664
+
665
+ if output_attentions:
666
+ outputs += (self_attn_weights,)
667
+
668
+ if use_cache:
669
+ outputs += (present_key_value,)
670
+
671
+ return outputs
672
+
673
+
674
+ SkyworkLM2_START_DOCSTRING = r"""
675
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
676
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
677
+ etc.)
678
+
679
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
680
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
681
+ and behavior.
682
+
683
+ Parameters:
684
+ config ([`SkyworkLM2Config`]):
685
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
686
+ load the weights associated with the model, only the configuration. Check out the
687
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
688
+ """
689
+
690
+
691
+ # Copied from transformers.models.llama.modeling_llama.LlamaPreTrainedModel with Llama->SkyworkLM2
692
+ @add_start_docstrings(
693
+ 'The bare SkyworkLM2 Model outputting raw hidden-states without any specific head on top.',
694
+ SkyworkLM2_START_DOCSTRING,
695
+ )
696
+ class SkyworkLM2PreTrainedModel(PreTrainedModel):
697
+ config_class = SkyworkLM2Config
698
+ base_model_prefix = 'model'
699
+ supports_gradient_checkpointing = True
700
+ _no_split_modules = ['SkyworkLM2DecoderLayer']
701
+ _skip_keys_device_placement = 'past_key_values'
702
+ _supports_flash_attn_2 = True
703
+
704
+ def _init_weights(self, module):
705
+ std = self.config.initializer_range
706
+ if isinstance(module, nn.Linear):
707
+ module.weight.data.normal_(mean=0.0, std=std)
708
+ if module.bias is not None:
709
+ module.bias.data.zero_()
710
+ elif isinstance(module, nn.Embedding):
711
+ module.weight.data.normal_(mean=0.0, std=std)
712
+ if module.padding_idx is not None:
713
+ module.weight.data[module.padding_idx].zero_()
714
+
715
+
716
+ SkyworkLM2_INPUTS_DOCSTRING = r"""
717
+ Args:
718
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
719
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
720
+ it.
721
+
722
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
723
+ [`PreTrainedTokenizer.__call__`] for details.
724
+
725
+ [What are input IDs?](../glossary#input-ids)
726
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
727
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
728
+
729
+ - 1 for tokens that are **not masked**,
730
+ - 0 for tokens that are **masked**.
731
+
732
+ [What are attention masks?](../glossary#attention-mask)
733
+
734
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
735
+ [`PreTrainedTokenizer.__call__`] for details.
736
+
737
+ If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
738
+ `past_key_values`).
739
+
740
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
741
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
742
+ information on the default strategy.
743
+
744
+ - 1 indicates the head is **not masked**,
745
+ - 0 indicates the head is **masked**.
746
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
747
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
748
+ config.n_positions - 1]`.
749
+
750
+ [What are position IDs?](../glossary#position-ids)
751
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or
752
+ when `config.use_cache=True`):
753
+ Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
754
+ `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
755
+ `(batch_size, num_heads, decoder_sequence_length, embed_size_per_head)`.
756
+
757
+ Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
758
+ blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
759
+
760
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
761
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
762
+ of shape `(batch_size, sequence_length)`.
763
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
764
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
765
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
766
+ model's skywork embedding lookup matrix.
767
+ use_cache (`bool`, *optional*):
768
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
769
+ `past_key_values`).
770
+ output_attentions (`bool`, *optional*):
771
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
772
+ tensors for more detail.
773
+ output_hidden_states (`bool`, *optional*):
774
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
775
+ more detail.
776
+ return_dict (`bool`, *optional*):
777
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
778
+ """
779
+
780
+
781
+ # Modified from transformers.model.llama.modeling_llama.LlamaModel
782
+ @add_start_docstrings(
783
+ 'The bare SkyworkLM2 Model outputting raw hidden-states without any specific head on top.',
784
+ SkyworkLM2_START_DOCSTRING,
785
+ )
786
+ class SkyworkLM2Model(SkyworkLM2PreTrainedModel):
787
+ """
788
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`SkyworkLM2DecoderLayer`]
789
+
790
+ Args:
791
+ config: SkyworkLM2Config
792
+ """
793
+
794
+ _auto_class = 'AutoModel'
795
+
796
+ def __init__(self, config: SkyworkLM2Config):
797
+ super().__init__(config)
798
+ self.padding_idx = config.pad_token_id
799
+ self.vocab_size = config.vocab_size
800
+ self.config = config
801
+ if not has_flash_attn:
802
+ self.config.attn_implementation = 'eager'
803
+ print('Warning: Flash attention is not available, using eager attention instead.')
804
+
805
+ self.tok_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
806
+
807
+ self.layers = nn.ModuleList([SkyworkLM2DecoderLayer(config) for _ in range(config.num_hidden_layers)])
808
+ self.norm = SkyworkLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
809
+
810
+ self.gradient_checkpointing = False
811
+ # Initialize weights and apply final processing
812
+ self.post_init()
813
+
814
+ def get_input_embeddings(self):
815
+ return self.tok_embeddings
816
+
817
+ def set_input_embeddings(self, value):
818
+ self.tok_embeddings = value
819
+
820
+ def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
821
+ # create causal mask
822
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
823
+ combined_attention_mask = None
824
+ if input_shape[-1] > 1:
825
+ combined_attention_mask = _make_causal_mask(
826
+ input_shape,
827
+ inputs_embeds.dtype,
828
+ device=inputs_embeds.device,
829
+ past_key_values_length=past_key_values_length,
830
+ )
831
+
832
+ if attention_mask is not None:
833
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
834
+ expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
835
+ inputs_embeds.device
836
+ )
837
+ combined_attention_mask = (
838
+ expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
839
+ )
840
+
841
+ return combined_attention_mask
842
+
843
+ @add_start_docstrings_to_model_forward(SkyworkLM2_INPUTS_DOCSTRING)
844
+ def forward(
845
+ self,
846
+ input_ids: torch.LongTensor = None,
847
+ attention_mask: Optional[torch.Tensor] = None,
848
+ position_ids: Optional[torch.LongTensor] = None,
849
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
850
+ inputs_embeds: Optional[torch.FloatTensor] = None,
851
+ use_cache: Optional[bool] = None,
852
+ output_attentions: Optional[bool] = None,
853
+ output_hidden_states: Optional[bool] = None,
854
+ return_dict: Optional[bool] = None,
855
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
856
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
857
+ output_hidden_states = (
858
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
859
+ )
860
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
861
+
862
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
863
+
864
+ if self.config.attn_implementation == 'flash_attention_2':
865
+ _import_flash_attn()
866
+
867
+ # retrieve input_ids and inputs_embeds
868
+ if input_ids is not None and inputs_embeds is not None:
869
+ raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time')
870
+ elif input_ids is not None:
871
+ batch_size, seq_length = input_ids.shape[:2]
872
+ elif inputs_embeds is not None:
873
+ batch_size, seq_length = inputs_embeds.shape[:2]
874
+ else:
875
+ raise ValueError('You have to specify either input_ids or inputs_embeds')
876
+
877
+ seq_length_with_past = seq_length
878
+ past_key_values_length = 0
879
+ if past_key_values is not None:
880
+ past_key_values_length = past_key_values[0][0].shape[2]
881
+ seq_length_with_past = seq_length_with_past + past_key_values_length
882
+
883
+ if position_ids is None:
884
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
885
+ position_ids = torch.arange(
886
+ past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
887
+ )
888
+ position_ids = position_ids.unsqueeze(0)
889
+
890
+ if inputs_embeds is None:
891
+ inputs_embeds = self.tok_embeddings(input_ids)
892
+
893
+ if self.config.attn_implementation == 'flash_attention_2':
894
+ # 2d mask is passed through the layers
895
+ attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
896
+ else:
897
+ if attention_mask is None:
898
+ attention_mask = torch.ones(
899
+ (batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
900
+ )
901
+ attention_mask = self._prepare_decoder_attention_mask(
902
+ attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
903
+ )
904
+
905
+ # embed positions
906
+ hidden_states = inputs_embeds
907
+
908
+ if self.gradient_checkpointing and self.training:
909
+ if use_cache:
910
+ logger.warning_once(
911
+ '`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...'
912
+ )
913
+ use_cache = False
914
+
915
+ # decoder layers
916
+ all_hidden_states = () if output_hidden_states else None
917
+ all_self_attns = () if output_attentions else None
918
+ next_decoder_cache = () if use_cache else None
919
+
920
+ for idx, decoder_layer in enumerate(self.layers):
921
+ if output_hidden_states:
922
+ all_hidden_states += (hidden_states,)
923
+
924
+ past_key_value = past_key_values[idx] if past_key_values is not None else None
925
+
926
+ if self.gradient_checkpointing and self.training:
927
+
928
+ def create_custom_forward(module):
929
+ def custom_forward(*inputs):
930
+ # None for past_key_value
931
+ return module(*inputs, output_attentions, None)
932
+
933
+ return custom_forward
934
+
935
+ layer_outputs = torch.utils.checkpoint.checkpoint(
936
+ create_custom_forward(decoder_layer),
937
+ hidden_states,
938
+ attention_mask,
939
+ position_ids,
940
+ None,
941
+ )
942
+ else:
943
+ layer_outputs = decoder_layer(
944
+ hidden_states,
945
+ attention_mask=attention_mask,
946
+ position_ids=position_ids,
947
+ past_key_value=past_key_value,
948
+ output_attentions=output_attentions,
949
+ use_cache=use_cache,
950
+ )
951
+
952
+ hidden_states = layer_outputs[0]
953
+
954
+ if use_cache:
955
+ next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
956
+
957
+ if output_attentions:
958
+ all_self_attns += (layer_outputs[1],)
959
+
960
+ hidden_states = self.norm(hidden_states)
961
+
962
+ # add hidden states from the last decoder layer
963
+ if output_hidden_states:
964
+ all_hidden_states += (hidden_states,)
965
+
966
+ next_cache = next_decoder_cache if use_cache else None
967
+ if not return_dict:
968
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
969
+ return BaseModelOutputWithPast(
970
+ last_hidden_state=hidden_states,
971
+ past_key_values=next_cache,
972
+ hidden_states=all_hidden_states,
973
+ attentions=all_self_attns,
974
+ )
975
+
976
+
977
+ # Modified from transformers.model.llama.modeling_llama.LlamaForCausalLM
978
+ class SkyworkLM2ForCausalLM(SkyworkLM2PreTrainedModel):
979
+ _auto_class = 'AutoModelForCausalLM'
980
+
981
+ _tied_weights_keys = ['output.weight']
982
+
983
+ def __init__(self, config):
984
+ super().__init__(config)
985
+ self.model = SkyworkLM2Model(config)
986
+ self.vocab_size = config.vocab_size
987
+ self.output = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
988
+
989
+ # Initialize weights and apply final processing
990
+ self.post_init()
991
+
992
+ def get_input_embeddings(self):
993
+ return self.model.tok_embeddings
994
+
995
+ def set_input_embeddings(self, value):
996
+ self.model.tok_embeddings = value
997
+
998
+ def get_output_embeddings(self):
999
+ return self.output
1000
+
1001
+ def set_output_embeddings(self, new_embeddings):
1002
+ self.output = new_embeddings
1003
+
1004
+ def set_decoder(self, decoder):
1005
+ self.model = decoder
1006
+
1007
+ def get_decoder(self):
1008
+ return self.model
1009
+
1010
+ @add_start_docstrings_to_model_forward(SkyworkLM2_INPUTS_DOCSTRING)
1011
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
1012
+ def forward(
1013
+ self,
1014
+ input_ids: torch.LongTensor = None,
1015
+ attention_mask: Optional[torch.Tensor] = None,
1016
+ position_ids: Optional[torch.LongTensor] = None,
1017
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1018
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1019
+ labels: Optional[torch.LongTensor] = None,
1020
+ use_cache: Optional[bool] = None,
1021
+ output_attentions: Optional[bool] = None,
1022
+ output_hidden_states: Optional[bool] = None,
1023
+ return_dict: Optional[bool] = None,
1024
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
1025
+ r"""
1026
+ Args:
1027
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1028
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
1029
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1030
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1031
+
1032
+ Returns:
1033
+
1034
+ Example:
1035
+
1036
+ ```python
1037
+ >>> from transformers import AutoTokenizer, SkyworkLM2ForCausalLM
1038
+
1039
+ >>> model = SkyworkLM2ForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
1040
+ >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
1041
+
1042
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
1043
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
1044
+
1045
+ >>> # Generate
1046
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
1047
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1048
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
1049
+ ```"""
1050
+
1051
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1052
+ output_hidden_states = (
1053
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1054
+ )
1055
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1056
+
1057
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1058
+ outputs = self.model(
1059
+ input_ids=input_ids,
1060
+ attention_mask=attention_mask,
1061
+ position_ids=position_ids,
1062
+ past_key_values=past_key_values,
1063
+ inputs_embeds=inputs_embeds,
1064
+ use_cache=use_cache,
1065
+ output_attentions=output_attentions,
1066
+ output_hidden_states=output_hidden_states,
1067
+ return_dict=return_dict,
1068
+ )
1069
+
1070
+ hidden_states = outputs[0]
1071
+ logits = self.output(hidden_states)
1072
+ logits = logits.float()
1073
+
1074
+ loss = None
1075
+ if labels is not None:
1076
+ # Shift so that tokens < n predict n
1077
+ shift_logits = logits[..., :-1, :].contiguous()
1078
+ shift_labels = labels[..., 1:].contiguous()
1079
+ # Flatten the tokens
1080
+ loss_fct = CrossEntropyLoss()
1081
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
1082
+ shift_labels = shift_labels.view(-1)
1083
+ # Enable model parallelism
1084
+ shift_labels = shift_labels.to(shift_logits.device)
1085
+ loss = loss_fct(shift_logits, shift_labels)
1086
+
1087
+ if not return_dict:
1088
+ output = (logits,) + outputs[1:]
1089
+ return (loss,) + output if loss is not None else output
1090
+
1091
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
1092
+ output = CausalLMOutputWithPast(
1093
+ loss=loss,
1094
+ logits=logits,
1095
+ past_key_values=outputs.past_key_values,
1096
+ hidden_states=outputs.hidden_states,
1097
+ attentions=outputs.attentions,
1098
+ )
1099
+ output['logits'] = output['logits'].to(device)
1100
+ return output
1101
+
1102
+ def prepare_inputs_for_generation(
1103
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
1104
+ ):
1105
+ if past_key_values is not None:
1106
+ past_length = past_key_values[0][0].shape[2]
1107
+
1108
+ # Some generation methods already pass only the last input ID
1109
+ if input_ids.shape[1] > past_length:
1110
+ remove_prefix_length = past_length
1111
+ else:
1112
+ # Default to old behavior: keep only final ID
1113
+ remove_prefix_length = input_ids.shape[1] - 1
1114
+
1115
+ input_ids = input_ids[:, remove_prefix_length:]
1116
+
1117
+ position_ids = kwargs.get('position_ids', None)
1118
+ if attention_mask is not None and position_ids is None:
1119
+ # create position_ids on the fly for batch generation
1120
+ position_ids = attention_mask.long().cumsum(-1) - 1
1121
+ position_ids.masked_fill_(attention_mask == 0, 1)
1122
+ if past_key_values:
1123
+ position_ids = position_ids[:, -input_ids.shape[1] :]
1124
+
1125
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1126
+ if inputs_embeds is not None and past_key_values is None:
1127
+ model_inputs = {'inputs_embeds': inputs_embeds}
1128
+ else:
1129
+ model_inputs = {'input_ids': input_ids}
1130
+
1131
+ model_inputs.update(
1132
+ {
1133
+ 'position_ids': position_ids,
1134
+ 'past_key_values': past_key_values,
1135
+ 'use_cache': kwargs.get('use_cache'),
1136
+ 'attention_mask': attention_mask,
1137
+ }
1138
+ )
1139
+ return model_inputs
1140
+
1141
+ @staticmethod
1142
+ def _reorder_cache(past_key_values, beam_idx):
1143
+ reordered_past = ()
1144
+ for layer_past in past_key_values:
1145
+ reordered_past += (
1146
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
1147
+ )
1148
+ return reordered_past
1149
+
1150
+ def build_inputs(self, tokenizer, query: str, history: List[Tuple[str, str]] = [], meta_instruction=''): #TODO
1151
+ if tokenizer.add_bos_token:
1152
+ prompt = ''
1153
+ else:
1154
+ prompt = tokenizer.bos_token
1155
+ if meta_instruction:
1156
+ prompt += f"""<|begin▁of▁sentence|>system\n{meta_instruction}<|end▁of▁sentence|>\n"""
1157
+ for record in history:
1158
+ prompt += f"""<|begin▁of▁sentence��>user\n{record[0]}<|end▁of▁sentence|>\n<|begin▁of▁sentence|>assistant\n{record[1]}<|end▁of▁sentence|>\n"""
1159
+ prompt += f"""<|begin▁of▁sentence|>user\n{query}<|end▁of▁sentence|>\n<|begin▁of▁sentence|>assistant\n"""
1160
+ return tokenizer([prompt], return_tensors='pt')
1161
+
1162
+ @torch.no_grad()
1163
+ def chat(
1164
+ self,
1165
+ tokenizer,
1166
+ query: str,
1167
+ history: List[Tuple[str, str]] = [],
1168
+ streamer: Optional[BaseStreamer] = None,
1169
+ max_new_tokens: int = 1024,
1170
+ do_sample: bool = True,
1171
+ temperature: float = 0.8,
1172
+ top_p: float = 0.8,
1173
+ meta_instruction: str = '',
1174
+ **kwargs,
1175
+ ):
1176
+ inputs = self.build_inputs(tokenizer, query, history, meta_instruction)
1177
+ inputs = {k: v.to(self.device) for k, v in inputs.items() if torch.is_tensor(v)}
1178
+ # also add end-of-assistant token in eos token id to avoid unnecessary generation
1179
+ eos_token_id = [tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids(['<|end▁of▁sentence|>'])[0]]
1180
+ outputs = self.generate(
1181
+ **inputs,
1182
+ streamer=streamer,
1183
+ max_new_tokens=max_new_tokens,
1184
+ do_sample=do_sample,
1185
+ temperature=temperature,
1186
+ top_p=top_p,
1187
+ eos_token_id=eos_token_id,
1188
+ **kwargs,
1189
+ )
1190
+ outputs = outputs[0].cpu().tolist()[len(inputs['input_ids'][0]) :]
1191
+ response = tokenizer.decode(outputs, skip_special_tokens=True)
1192
+ response = response.split('<|end▁of▁sentence|>')[0]
1193
+ history = history + [(query, response)]
1194
+ return response, history
1195
+
1196
+ @torch.no_grad()
1197
+ def stream_chat(
1198
+ self,
1199
+ tokenizer,
1200
+ query: str,
1201
+ history: List[Tuple[str, str]] = [],
1202
+ max_new_tokens: int = 1024,
1203
+ do_sample: bool = True,
1204
+ temperature: float = 0.8,
1205
+ top_p: float = 0.8,
1206
+ **kwargs,
1207
+ ):
1208
+ """
1209
+ Return a generator in format: (response, history)
1210
+ Eg.
1211
+ ('你好,有什么可以帮助您的吗', [('你好', '你好,有什么可以帮助您的吗')])
1212
+ ('你好,有什么可以帮助您的吗?', [('你好', '你好,有什么可以帮助您的吗?')])
1213
+ """
1214
+ if BaseStreamer is None:
1215
+ raise ModuleNotFoundError(
1216
+ 'The version of `transformers` is too low. Please make sure '
1217
+ 'that you have installed `transformers>=4.28.0`.'
1218
+ )
1219
+
1220
+ response_queue = queue.Queue(maxsize=20)
1221
+
1222
+ class ChatStreamer(BaseStreamer):
1223
+ def __init__(self, tokenizer) -> None:
1224
+ super().__init__()
1225
+ self.tokenizer = tokenizer
1226
+ self.queue = response_queue
1227
+ self.query = query
1228
+ self.history = history
1229
+ self.response = ''
1230
+ self.cache = []
1231
+ self.received_inputs = False
1232
+ self.queue.put((self.response, history + [(self.query, self.response)]))
1233
+
1234
+ def put(self, value):
1235
+ if len(value.shape) > 1 and value.shape[0] > 1:
1236
+ raise ValueError('ChatStreamer only supports batch size 1')
1237
+ elif len(value.shape) > 1:
1238
+ value = value[0]
1239
+
1240
+ if not self.received_inputs:
1241
+ # The first received value is input_ids, ignore here
1242
+ self.received_inputs = True
1243
+ return
1244
+
1245
+ self.cache.extend(value.tolist())
1246
+ token = self.tokenizer.decode(self.cache, skip_special_tokens=True)
1247
+ if token.strip() != '<|end▁of▁sentence|>':
1248
+ self.response = self.response + token
1249
+ history = self.history + [(self.query, self.response)]
1250
+ self.queue.put((self.response, history))
1251
+ self.cache = []
1252
+ else:
1253
+ self.end()
1254
+
1255
+ def end(self):
1256
+ self.queue.put(None)
1257
+
1258
+ def stream_producer():
1259
+ return self.chat(
1260
+ tokenizer=tokenizer,
1261
+ query=query,
1262
+ streamer=ChatStreamer(tokenizer=tokenizer),
1263
+ history=history,
1264
+ max_new_tokens=max_new_tokens,
1265
+ do_sample=do_sample,
1266
+ temperature=temperature,
1267
+ top_p=top_p,
1268
+ **kwargs,
1269
+ )
1270
+
1271
+ def consumer():
1272
+ producer = threading.Thread(target=stream_producer)
1273
+ producer.start()
1274
+ while True:
1275
+ res = response_queue.get()
1276
+ if res is None:
1277
+ return
1278
+ yield res
1279
+
1280
+ return consumer()
1281
+
1282
+
1283
+ # Copied from transformers.model.llama.modeling_llama.LlamaForSequenceClassification with Llama->SkyworkLM2
1284
+ @add_start_docstrings(
1285
+ """
1286
+ The SkyworkLM2 Model transformer with a sequence classification head on top (linear layer).
1287
+
1288
+ [`SkyworkLM2ForSequenceClassification`] uses the last token in order to do the classification,
1289
+ as other causal models (e.g. GPT-2) do.
1290
+
1291
+ Since it does classification on the last token, it requires to know the position of the last token. If a
1292
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
1293
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
1294
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
1295
+ each row of the batch).
1296
+ """,
1297
+ SkyworkLM2_START_DOCSTRING,
1298
+ )
1299
+ class SkyworkLM2ForSequenceClassification(SkyworkLM2PreTrainedModel):
1300
+ def __init__(self, config):
1301
+ super().__init__(config)
1302
+ self.num_labels = config.num_labels
1303
+ self.model = SkyworkLM2Model(config)
1304
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1305
+
1306
+ # Initialize weights and apply final processing
1307
+ self.post_init()
1308
+
1309
+ def get_input_embeddings(self):
1310
+ return self.model.tok_embeddings
1311
+
1312
+ def set_input_embeddings(self, value):
1313
+ self.model.tok_embeddings = value
1314
+
1315
+ @add_start_docstrings_to_model_forward(SkyworkLM2_INPUTS_DOCSTRING)
1316
+ def forward(
1317
+ self,
1318
+ input_ids: torch.LongTensor = None,
1319
+ attention_mask: Optional[torch.Tensor] = None,
1320
+ position_ids: Optional[torch.LongTensor] = None,
1321
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1322
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1323
+ labels: Optional[torch.LongTensor] = None,
1324
+ use_cache: Optional[bool] = None,
1325
+ output_attentions: Optional[bool] = None,
1326
+ output_hidden_states: Optional[bool] = None,
1327
+ return_dict: Optional[bool] = None,
1328
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1329
+ r"""
1330
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1331
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1332
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1333
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1334
+ """
1335
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1336
+
1337
+ transformer_outputs = self.model(
1338
+ input_ids,
1339
+ attention_mask=attention_mask,
1340
+ position_ids=position_ids,
1341
+ past_key_values=past_key_values,
1342
+ inputs_embeds=inputs_embeds,
1343
+ use_cache=use_cache,
1344
+ output_attentions=output_attentions,
1345
+ output_hidden_states=output_hidden_states,
1346
+ return_dict=return_dict,
1347
+ )
1348
+ hidden_states = transformer_outputs[0]
1349
+ logits = self.score(hidden_states)
1350
+
1351
+ if input_ids is not None:
1352
+ batch_size = input_ids.shape[0]
1353
+ else:
1354
+ batch_size = inputs_embeds.shape[0]
1355
+
1356
+ if self.config.pad_token_id is None and batch_size != 1:
1357
+ raise ValueError('Cannot handle batch sizes > 1 if no padding token is defined.')
1358
+ if self.config.pad_token_id is None:
1359
+ sequence_lengths = -1
1360
+ else:
1361
+ if input_ids is not None:
1362
+ sequence_lengths = (torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1).to(
1363
+ logits.device
1364
+ )
1365
+ else:
1366
+ sequence_lengths = -1
1367
+
1368
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
1369
+
1370
+ loss = None
1371
+ if labels is not None:
1372
+ labels = labels.to(logits.device)
1373
+ if self.config.problem_type is None:
1374
+ if self.num_labels == 1:
1375
+ self.config.problem_type = 'regression'
1376
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1377
+ self.config.problem_type = 'single_label_classification'
1378
+ else:
1379
+ self.config.problem_type = 'multi_label_classification'
1380
+
1381
+ if self.config.problem_type == 'regression':
1382
+ loss_fct = MSELoss()
1383
+ if self.num_labels == 1:
1384
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1385
+ else:
1386
+ loss = loss_fct(pooled_logits, labels)
1387
+ elif self.config.problem_type == 'single_label_classification':
1388
+ loss_fct = CrossEntropyLoss()
1389
+ loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
1390
+ elif self.config.problem_type == 'multi_label_classification':
1391
+ loss_fct = BCEWithLogitsLoss()
1392
+ loss = loss_fct(pooled_logits, labels)
1393
+ if not return_dict:
1394
+ output = (pooled_logits,) + transformer_outputs[1:]
1395
+ return ((loss,) + output) if loss is not None else output
1396
+
1397
+ return SequenceClassifierOutputWithPast(
1398
+ loss=loss,
1399
+ logits=pooled_logits,
1400
+ past_key_values=transformer_outputs.past_key_values,
1401
+ hidden_states=transformer_outputs.hidden_states,
1402
+ attentions=transformer_outputs.attentions,
1403
+ )
modeling_skywork_vit.py ADDED
@@ -0,0 +1,424 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Optional, Tuple, Union
2
+
3
+ import torch
4
+ import torch.nn.functional as F
5
+ import torch.utils.checkpoint
6
+ from einops import rearrange
7
+ from timm.models.layers import DropPath
8
+ from torch import nn
9
+ from transformers.activations import ACT2FN
10
+ from transformers.modeling_outputs import (BaseModelOutput,
11
+ BaseModelOutputWithPooling)
12
+ from transformers.modeling_utils import PreTrainedModel
13
+ from transformers.utils import logging
14
+
15
+ from .configuration_skywork_vit import SkyworkVisionConfig
16
+
17
+ try:
18
+ from flash_attn.bert_padding import pad_input, unpad_input
19
+ from flash_attn.flash_attn_interface import \
20
+ flash_attn_varlen_qkvpacked_func
21
+ has_flash_attn = True
22
+ except:
23
+ print('FlashAttention2 is not installed.')
24
+ has_flash_attn = False
25
+
26
+ logger = logging.get_logger(__name__)
27
+
28
+
29
+ class FlashAttention(nn.Module):
30
+ """Implement the scaled dot product attention with softmax.
31
+ Arguments
32
+ ---------
33
+ softmax_scale: The temperature to use for the softmax attention.
34
+ (default: 1/sqrt(d_keys) where d_keys is computed at
35
+ runtime)
36
+ attention_dropout: The dropout rate to apply to the attention
37
+ (default: 0.0)
38
+ """
39
+
40
+ def __init__(self, softmax_scale=None, attention_dropout=0.0, device=None, dtype=None):
41
+ super().__init__()
42
+ self.softmax_scale = softmax_scale
43
+ self.dropout_p = attention_dropout
44
+
45
+ def forward(self, qkv, key_padding_mask=None, causal=False, cu_seqlens=None,
46
+ max_s=None, need_weights=False):
47
+ """Implements the multihead softmax attention.
48
+ Arguments
49
+ ---------
50
+ qkv: The tensor containing the query, key, and value. (B, S, 3, H, D) if key_padding_mask is None
51
+ if unpadded: (nnz, 3, h, d)
52
+ key_padding_mask: a bool tensor of shape (B, S)
53
+ """
54
+ assert not need_weights
55
+ assert qkv.dtype in [torch.float16, torch.bfloat16]
56
+ assert qkv.is_cuda
57
+
58
+ if cu_seqlens is None:
59
+ batch_size = qkv.shape[0]
60
+ seqlen = qkv.shape[1]
61
+ if key_padding_mask is None:
62
+ qkv = rearrange(qkv, 'b s ... -> (b s) ...')
63
+ max_s = seqlen
64
+ cu_seqlens = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32,
65
+ device=qkv.device)
66
+ output = flash_attn_varlen_qkvpacked_func(
67
+ qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
68
+ softmax_scale=self.softmax_scale, causal=causal
69
+ )
70
+ output = rearrange(output, '(b s) ... -> b s ...', b=batch_size)
71
+ else:
72
+ nheads = qkv.shape[-2]
73
+ x = rearrange(qkv, 'b s three h d -> b s (three h d)')
74
+ x_unpad, indices, cu_seqlens, max_s = unpad_input(x, key_padding_mask)
75
+ x_unpad = rearrange(x_unpad, 'nnz (three h d) -> nnz three h d', three=3, h=nheads)
76
+ output_unpad = flash_attn_varlen_qkvpacked_func(
77
+ x_unpad, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
78
+ softmax_scale=self.softmax_scale, causal=causal
79
+ )
80
+ output = rearrange(pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'),
81
+ indices, batch_size, seqlen),
82
+ 'b s (h d) -> b s h d', h=nheads)
83
+ else:
84
+ assert max_s is not None
85
+ output = flash_attn_varlen_qkvpacked_func(
86
+ qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
87
+ softmax_scale=self.softmax_scale, causal=causal
88
+ )
89
+
90
+ return output, None
91
+
92
+
93
+ class SkyworkRMSNorm(nn.Module):
94
+ def __init__(self, hidden_size, eps=1e-6):
95
+ super().__init__()
96
+ self.weight = nn.Parameter(torch.ones(hidden_size))
97
+ self.variance_epsilon = eps
98
+
99
+ def forward(self, hidden_states):
100
+ input_dtype = hidden_states.dtype
101
+ hidden_states = hidden_states.to(torch.float32)
102
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
103
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
104
+ return self.weight * hidden_states.to(input_dtype)
105
+
106
+
107
+ try:
108
+ from apex.normalization import FusedRMSNorm
109
+
110
+ SkyworkRMSNorm = FusedRMSNorm # noqa
111
+
112
+ logger.info('Discovered apex.normalization.FusedRMSNorm - will use it instead ofSkyworkRMSNorm')
113
+ except ImportError:
114
+ # using the normal SkyworkRMSNorm
115
+ pass
116
+ except Exception:
117
+ logger.warning('discovered apex but it failed to load, falling back to SkyworkRMSNorm')
118
+ pass
119
+
120
+
121
+ NORM2FN = {
122
+ 'rms_norm': SkyworkRMSNorm,
123
+ 'layer_norm': nn.LayerNorm,
124
+ }
125
+
126
+
127
+ class SkyworkVisionEmbeddings(nn.Module):
128
+ def __init__(self, config: SkyworkVisionConfig):
129
+ super().__init__()
130
+ self.config = config
131
+ self.embed_dim = config.hidden_size
132
+ self.image_size = config.image_size
133
+ self.patch_size = config.patch_size
134
+
135
+ self.class_embedding = nn.Parameter(
136
+ torch.randn(1, 1, self.embed_dim),
137
+ )
138
+
139
+ self.patch_embedding = nn.Conv2d(
140
+ in_channels=3, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size
141
+ )
142
+
143
+ self.num_patches = (self.image_size // self.patch_size) ** 2
144
+ self.num_positions = self.num_patches + 1
145
+
146
+ self.position_embedding = nn.Parameter(torch.randn(1, self.num_positions, self.embed_dim))
147
+
148
+ def _get_pos_embed(self, pos_embed, H, W):
149
+ target_dtype = pos_embed.dtype
150
+ pos_embed = pos_embed.float().reshape(
151
+ 1, self.image_size // self.patch_size, self.image_size // self.patch_size, -1).permute(0, 3, 1, 2)
152
+ pos_embed = F.interpolate(pos_embed, size=(H, W), mode='bicubic', align_corners=False). \
153
+ reshape(1, -1, H * W).permute(0, 2, 1).to(target_dtype)
154
+ return pos_embed
155
+
156
+ def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
157
+ target_dtype = self.patch_embedding.weight.dtype
158
+ patch_embeds = self.patch_embedding(pixel_values) # shape = [*, channel, width, height]
159
+ batch_size, _, height, width = patch_embeds.shape
160
+ patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
161
+ class_embeds = self.class_embedding.expand(batch_size, 1, -1).to(target_dtype)
162
+ embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
163
+ position_embedding = torch.cat([
164
+ self.position_embedding[:, :1, :],
165
+ self._get_pos_embed(self.position_embedding[:, 1:, :], height, width)
166
+ ], dim=1)
167
+ embeddings = embeddings + position_embedding.to(target_dtype)
168
+ return embeddings
169
+
170
+
171
+ class SkyworkAttention(nn.Module):
172
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
173
+
174
+ def __init__(self, config: SkyworkVisionConfig):
175
+ super().__init__()
176
+ self.config = config
177
+ self.embed_dim = config.hidden_size
178
+ self.num_heads = config.num_attention_heads
179
+ self.use_flash_attn = config.use_flash_attn and has_flash_attn
180
+ if config.use_flash_attn and not has_flash_attn:
181
+ print('Warning: Flash Attention is not available, use_flash_attn is set to False.')
182
+ self.head_dim = self.embed_dim // self.num_heads
183
+ if self.head_dim * self.num_heads != self.embed_dim:
184
+ raise ValueError(
185
+ f'embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:'
186
+ f' {self.num_heads}).'
187
+ )
188
+
189
+ self.scale = self.head_dim ** -0.5
190
+ self.qkv = nn.Linear(self.embed_dim, 3 * self.embed_dim, bias=config.qkv_bias)
191
+ self.attn_drop = nn.Dropout(config.attention_dropout)
192
+ self.proj_drop = nn.Dropout(config.dropout)
193
+
194
+ self.qk_normalization = config.qk_normalization
195
+
196
+ if self.qk_normalization:
197
+ self.q_norm = SkyworkRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
198
+ self.k_norm = SkyworkRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
199
+
200
+ if self.use_flash_attn:
201
+ self.inner_attn = FlashAttention(attention_dropout=config.attention_dropout)
202
+ self.proj = nn.Linear(self.embed_dim, self.embed_dim)
203
+
204
+ def _naive_attn(self, x):
205
+ B, N, C = x.shape
206
+ qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
207
+ q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple)
208
+
209
+ if self.qk_normalization:
210
+ B_, H_, N_, D_ = q.shape
211
+ q = self.q_norm(q.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
212
+ k = self.k_norm(k.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
213
+
214
+ attn = ((q * self.scale) @ k.transpose(-2, -1))
215
+ attn = attn.softmax(dim=-1)
216
+ attn = self.attn_drop(attn)
217
+
218
+ x = (attn @ v).transpose(1, 2).reshape(B, N, C)
219
+ x = self.proj(x)
220
+ x = self.proj_drop(x)
221
+ return x
222
+
223
+ def _flash_attn(self, x, key_padding_mask=None, need_weights=False):
224
+ qkv = self.qkv(x)
225
+ qkv = rearrange(qkv, 'b s (three h d) -> b s three h d', three=3, h=self.num_heads)
226
+
227
+ if self.qk_normalization:
228
+ q, k, v = qkv.unbind(2)
229
+ q = self.q_norm(q.flatten(-2, -1)).view(q.shape)
230
+ k = self.k_norm(k.flatten(-2, -1)).view(k.shape)
231
+ qkv = torch.stack([q, k, v], dim=2)
232
+
233
+ context, _ = self.inner_attn(
234
+ qkv, key_padding_mask=key_padding_mask, need_weights=need_weights, causal=False
235
+ )
236
+ outs = self.proj(rearrange(context, 'b s h d -> b s (h d)'))
237
+ outs = self.proj_drop(outs)
238
+ return outs
239
+
240
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
241
+ x = self._naive_attn(hidden_states) if not self.use_flash_attn else self._flash_attn(hidden_states)
242
+ return x
243
+
244
+
245
+ class SkyworkMLP(nn.Module):
246
+ def __init__(self, config: SkyworkVisionConfig):
247
+ super().__init__()
248
+ self.config = config
249
+ self.act = ACT2FN[config.hidden_act]
250
+ self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
251
+ self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
252
+
253
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
254
+ hidden_states = self.fc1(hidden_states)
255
+ hidden_states = self.act(hidden_states)
256
+ hidden_states = self.fc2(hidden_states)
257
+ return hidden_states
258
+
259
+
260
+ class SkyworkVisionEncoderLayer(nn.Module):
261
+ def __init__(self, config: SkyworkVisionConfig, drop_path_rate: float):
262
+ super().__init__()
263
+ self.embed_dim = config.hidden_size
264
+ self.intermediate_size = config.intermediate_size
265
+ self.norm_type = config.norm_type
266
+
267
+ self.attn = SkyworkAttention(config)
268
+ self.mlp = SkyworkMLP(config)
269
+ self.norm1 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
270
+ self.norm2 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
271
+
272
+ self.ls1 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
273
+ self.ls2 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
274
+ self.drop_path1 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
275
+ self.drop_path2 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
276
+
277
+ def forward(
278
+ self,
279
+ hidden_states: torch.Tensor,
280
+ ) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor], Optional[Tuple[torch.FloatTensor]]]:
281
+ """
282
+ Args:
283
+ hidden_states (`Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]`): input to the layer of shape `(batch, seq_len, embed_dim)`
284
+ """
285
+ hidden_states = hidden_states + self.drop_path1(self.attn(self.norm1(hidden_states).to(hidden_states.dtype)) * self.ls1)
286
+
287
+ hidden_states = hidden_states + self.drop_path2(self.mlp(self.norm2(hidden_states).to(hidden_states.dtype)) * self.ls2)
288
+
289
+ return hidden_states
290
+
291
+
292
+ class SkyworkVisionEncoder(nn.Module):
293
+ """
294
+ Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
295
+ [`SkyworkEncoderLayer`].
296
+
297
+ Args:
298
+ config (`SkyworkConfig`):
299
+ The corresponding vision configuration for the `SkyworkEncoder`.
300
+ """
301
+
302
+ def __init__(self, config: SkyworkVisionConfig):
303
+ super().__init__()
304
+ self.config = config
305
+ # stochastic depth decay rule
306
+ dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, config.num_hidden_layers)]
307
+ self.layers = nn.ModuleList([
308
+ SkyworkVisionEncoderLayer(config, dpr[idx]) for idx in range(config.num_hidden_layers)])
309
+ self.gradient_checkpointing = True
310
+
311
+ def forward(
312
+ self,
313
+ inputs_embeds,
314
+ output_hidden_states: Optional[bool] = None,
315
+ return_dict: Optional[bool] = None,
316
+ ) -> Union[Tuple, BaseModelOutput]:
317
+ r"""
318
+ Args:
319
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
320
+ Embedded representation of the inputs. Should be float, not int tokens.
321
+ output_hidden_states (`bool`, *optional*):
322
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
323
+ for more detail.
324
+ return_dict (`bool`, *optional*):
325
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
326
+ """
327
+ output_hidden_states = (
328
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
329
+ )
330
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
331
+
332
+ encoder_states = () if output_hidden_states else None
333
+ hidden_states = inputs_embeds
334
+
335
+ for idx, encoder_layer in enumerate(self.layers):
336
+ if output_hidden_states:
337
+ encoder_states = encoder_states + (hidden_states,)
338
+ if self.gradient_checkpointing and self.training:
339
+ layer_outputs = torch.utils.checkpoint.checkpoint(
340
+ encoder_layer,
341
+ hidden_states)
342
+ else:
343
+ layer_outputs = encoder_layer(
344
+ hidden_states,
345
+ )
346
+ hidden_states = layer_outputs
347
+
348
+ if output_hidden_states:
349
+ encoder_states = encoder_states + (hidden_states,)
350
+
351
+ if not return_dict:
352
+ return tuple(v for v in [hidden_states, encoder_states] if v is not None)
353
+ return BaseModelOutput(
354
+ last_hidden_state=hidden_states, hidden_states=encoder_states
355
+ )
356
+
357
+
358
+ class SkyworkVisionModel(PreTrainedModel):
359
+ main_input_name = 'pixel_values'
360
+ _supports_flash_attn_2 = True
361
+ config_class = SkyworkVisionConfig
362
+ _no_split_modules = ['SkyworkVisionEncoderLayer']
363
+
364
+ def __init__(self, config: SkyworkVisionConfig):
365
+ super().__init__(config)
366
+ self.config = config
367
+
368
+ self.embeddings = SkyworkVisionEmbeddings(config)
369
+ self.encoder = SkyworkVisionEncoder(config)
370
+
371
+ def resize_pos_embeddings(self, old_size, new_size, patch_size):
372
+ pos_emb = self.embeddings.position_embedding
373
+ _, num_positions, embed_dim = pos_emb.shape
374
+ cls_emb = pos_emb[:, :1, :]
375
+ pos_emb = pos_emb[:, 1:, :].reshape(1, old_size // patch_size, old_size // patch_size, -1).permute(0, 3, 1, 2)
376
+ pos_emb = F.interpolate(pos_emb.float(), size=new_size // patch_size, mode='bicubic', align_corners=False)
377
+ pos_emb = pos_emb.to(cls_emb.dtype).reshape(1, embed_dim, -1).permute(0, 2, 1)
378
+ pos_emb = torch.cat([cls_emb, pos_emb], dim=1)
379
+ self.embeddings.position_embedding = nn.Parameter(pos_emb)
380
+ self.embeddings.image_size = new_size
381
+ logger.info('Resized position embeddings from {} to {}'.format(old_size, new_size))
382
+
383
+ def get_input_embeddings(self):
384
+ return self.embeddings
385
+
386
+ def forward(
387
+ self,
388
+ pixel_values: Optional[torch.FloatTensor] = None,
389
+ output_hidden_states: Optional[bool] = None,
390
+ return_dict: Optional[bool] = None,
391
+ pixel_embeds: Optional[torch.FloatTensor] = None,
392
+ ) -> Union[Tuple, BaseModelOutputWithPooling]:
393
+ output_hidden_states = (
394
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
395
+ )
396
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
397
+
398
+ if pixel_values is None and pixel_embeds is None:
399
+ raise ValueError('You have to specify pixel_values or pixel_embeds')
400
+
401
+ if pixel_embeds is not None:
402
+ hidden_states = pixel_embeds
403
+ else:
404
+ if len(pixel_values.shape) == 4:
405
+ hidden_states = self.embeddings(pixel_values)
406
+ else:
407
+ raise ValueError(f'wrong pixel_values size: {pixel_values.shape}')
408
+ encoder_outputs = self.encoder(
409
+ inputs_embeds=hidden_states,
410
+ output_hidden_states=output_hidden_states,
411
+ return_dict=return_dict,
412
+ )
413
+ last_hidden_state = encoder_outputs.last_hidden_state
414
+ pooled_output = last_hidden_state[:, 0, :]
415
+
416
+ if not return_dict:
417
+ return (last_hidden_state, pooled_output) + encoder_outputs[1:]
418
+
419
+ return BaseModelOutputWithPooling(
420
+ last_hidden_state=last_hidden_state,
421
+ pooler_output=pooled_output,
422
+ hidden_states=encoder_outputs.hidden_states,
423
+ attentions=encoder_outputs.attentions,
424
+ )
outputs_stats.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:30f720a6c9249726c214142c75d8c753d5cc201e3482c2405034012ebdaa8e67
3
+ size 53953211
preprocessor_config.json ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "crop_size": 448,
3
+ "do_center_crop": true,
4
+ "do_normalize": true,
5
+ "do_resize": true,
6
+ "feature_extractor_type": "CLIPFeatureExtractor",
7
+ "image_mean": [
8
+ 0.485,
9
+ 0.456,
10
+ 0.406
11
+ ],
12
+ "image_std": [
13
+ 0.229,
14
+ 0.224,
15
+ 0.225
16
+ ],
17
+ "resample": 3,
18
+ "size": 448
19
+ }
pytorch_model-00001-of-00016.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c5ced854215015e96cd15f1e04e233eef58c6cc62cffb184a8f3f698f6e1cdfd
3
+ size 1977080752
pytorch_model-00002-of-00016.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bf85fad6bfeb43d34ffbb8d528b8fb40aee8021b0501f56f83e9d1019824beda
3
+ size 1966729982
pytorch_model-00003-of-00016.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ae15f02c5db493a1645aee6238a38f8bd1167d26820d020d882a9b00b8672401
3
+ size 1966729982
pytorch_model-00004-of-00016.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7238ac555738d0fa68a145c7495a4ab4f2770033711b781942540509894b0f8f
3
+ size 1966729982
pytorch_model-00005-of-00016.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:70775eaec5d616824db26c6865f15c30810dab2a7f215eebda8349e3ac7ebd78
3
+ size 1966729982
pytorch_model-00006-of-00016.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4b8551d094afebb1281b4a2e0cca94b85b8f35223106025a27441fcaa66c2aea
3
+ size 1229192920
pytorch_model-00007-of-00016.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:30a8c530e36707cb3d449df3ff864d953e9a60cfdaebc2f576cf4387c095d511
3
+ size 1990292234
pytorch_model-00008-of-00016.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3c0e0ab30e9d9538c3d2ab34e7e4f2623d07047bc15f331fae3c91c83f82590a
3
+ size 1953344189
pytorch_model-00009-of-00016.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ad7e6f91ddd4e78347ea54fa5aca42ac53331e2da697d27f995ff1ca73c91501
3
+ size 1953344381
pytorch_model-00010-of-00016.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:314185898d50a4a6187e2144086f628e1f694a081fa13ddf044ce347ac535d06
3
+ size 1994193964
pytorch_model-00011-of-00016.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfcbdc2e828c70ec320d9aedefd36b67c39aba7d30e5642ecac59290384e93d6
3
+ size 1953312580
pytorch_model-00012-of-00016.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:03c703bb12565bab55ae1bc684c3429f80afcb3952b2cd9290458e41a091ea9b
3
+ size 1953344381
pytorch_model-00013-of-00016.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fa65556bd45f287f9ac6e298f69e8709436bc21d45964d9122bd7e192f94bb66
3
+ size 1953344381
pytorch_model-00014-of-00016.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:65db62a56db80da50e4de79e26690e64e41bb38b7f1638bcfc8c7ba9c9171777
3
+ size 1994193964
pytorch_model-00015-of-00016.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f7357448e216e9a8757f57221088ada361fbbafe10942cf5811a66b5a2c19139
3
+ size 1953312580
pytorch_model-00016-of-00016.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ca1ba466eac1a05daf9c75def7cfd6977884f0e041d2f45c7c01f9d8190ba11f
3
+ size 1814287316
pytorch_model.bin.index.json ADDED
The diff for this file is too large to render. See raw diff
 
special_tokens_map.json ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|object_ref_start|>",
4
+ "<|object_ref_end|>",
5
+ "<|box_start|>",
6
+ "<|box_end|>",
7
+ "<|quad_start|>",
8
+ "<|quad_end|>",
9
+ "<|vision_start|>",
10
+ "<|vision_end|>",
11
+ "<|vision_pad|>",
12
+ "<|image_pad|>",
13
+ "<|video_pad|>",
14
+ "<img>",
15
+ "</img>",
16
+ "<IMG_CONTEXT>",
17
+ "<quad>",
18
+ "</quad>",
19
+ "<ref>",
20
+ "</ref>",
21
+ "<box>",
22
+ "</box>",
23
+ "<|begin▁of▁sentence|>",
24
+ "<|end▁of▁sentence|>"
25
+ ],
26
+ "bos_token": {
27
+ "content": "<|begin▁of▁sentence|>",
28
+ "lstrip": false,
29
+ "normalized": false,
30
+ "rstrip": false,
31
+ "single_word": false
32
+ },
33
+ "eos_token": {
34
+ "content": "<|end▁of▁sentence|>",
35
+ "lstrip": false,
36
+ "normalized": false,
37
+ "rstrip": false,
38
+ "single_word": false
39
+ },
40
+ "pad_token": {
41
+ "content": "<|endoftext|>",
42
+ "lstrip": false,
43
+ "normalized": false,
44
+ "rstrip": false,
45
+ "single_word": false
46
+ }
47
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a350ed12efa53684c72bf880e075ee34b83aa78c0f023747b67014a565bf6fe7
3
+ size 11425390
tokenizer_config.json ADDED
@@ -0,0 +1,330 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": null,
5
+ "added_tokens_decoder": {
6
+ "151643": {
7
+ "content": "<|end▁of▁sentence|>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "151644": {
15
+ "content": "<|User|>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": false
21
+ },
22
+ "151645": {
23
+ "content": "<|Assistant|>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": false
29
+ },
30
+ "151646": {
31
+ "content": "<|begin▁of▁sentence|>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false,
36
+ "special": true
37
+ },
38
+ "151647": {
39
+ "content": "<|EOT|>",
40
+ "lstrip": false,
41
+ "normalized": false,
42
+ "rstrip": false,
43
+ "single_word": false,
44
+ "special": false
45
+ },
46
+ "151648": {
47
+ "content": "<think>",
48
+ "lstrip": false,
49
+ "normalized": false,
50
+ "rstrip": false,
51
+ "single_word": false,
52
+ "special": false
53
+ },
54
+ "151649": {
55
+ "content": "</think>",
56
+ "lstrip": false,
57
+ "normalized": false,
58
+ "rstrip": false,
59
+ "single_word": false,
60
+ "special": false
61
+ },
62
+ "151650": {
63
+ "content": "<|quad_start|>",
64
+ "lstrip": false,
65
+ "normalized": false,
66
+ "rstrip": false,
67
+ "single_word": false,
68
+ "special": true
69
+ },
70
+ "151651": {
71
+ "content": "<|quad_end|>",
72
+ "lstrip": false,
73
+ "normalized": false,
74
+ "rstrip": false,
75
+ "single_word": false,
76
+ "special": true
77
+ },
78
+ "151652": {
79
+ "content": "<|vision_start|>",
80
+ "lstrip": false,
81
+ "normalized": false,
82
+ "rstrip": false,
83
+ "single_word": false,
84
+ "special": true
85
+ },
86
+ "151653": {
87
+ "content": "<|vision_end|>",
88
+ "lstrip": false,
89
+ "normalized": false,
90
+ "rstrip": false,
91
+ "single_word": false,
92
+ "special": true
93
+ },
94
+ "151654": {
95
+ "content": "<|vision_pad|>",
96
+ "lstrip": false,
97
+ "normalized": false,
98
+ "rstrip": false,
99
+ "single_word": false,
100
+ "special": true
101
+ },
102
+ "151655": {
103
+ "content": "<|image_pad|>",
104
+ "lstrip": false,
105
+ "normalized": false,
106
+ "rstrip": false,
107
+ "single_word": false,
108
+ "special": true
109
+ },
110
+ "151656": {
111
+ "content": "<|video_pad|>",
112
+ "lstrip": false,
113
+ "normalized": false,
114
+ "rstrip": false,
115
+ "single_word": false,
116
+ "special": true
117
+ },
118
+ "151657": {
119
+ "content": "<tool_call>",
120
+ "lstrip": false,
121
+ "normalized": false,
122
+ "rstrip": false,
123
+ "single_word": false,
124
+ "special": false
125
+ },
126
+ "151658": {
127
+ "content": "</tool_call>",
128
+ "lstrip": false,
129
+ "normalized": false,
130
+ "rstrip": false,
131
+ "single_word": false,
132
+ "special": false
133
+ },
134
+ "151659": {
135
+ "content": "<|fim_prefix|>",
136
+ "lstrip": false,
137
+ "normalized": false,
138
+ "rstrip": false,
139
+ "single_word": false,
140
+ "special": false
141
+ },
142
+ "151660": {
143
+ "content": "<|fim_middle|>",
144
+ "lstrip": false,
145
+ "normalized": false,
146
+ "rstrip": false,
147
+ "single_word": false,
148
+ "special": false
149
+ },
150
+ "151661": {
151
+ "content": "<|fim_suffix|>",
152
+ "lstrip": false,
153
+ "normalized": false,
154
+ "rstrip": false,
155
+ "single_word": false,
156
+ "special": false
157
+ },
158
+ "151662": {
159
+ "content": "<|fim_pad|>",
160
+ "lstrip": false,
161
+ "normalized": false,
162
+ "rstrip": false,
163
+ "single_word": false,
164
+ "special": false
165
+ },
166
+ "151663": {
167
+ "content": "<|repo_name|>",
168
+ "lstrip": false,
169
+ "normalized": false,
170
+ "rstrip": false,
171
+ "single_word": false,
172
+ "special": false
173
+ },
174
+ "151664": {
175
+ "content": "<|file_sep|>",
176
+ "lstrip": false,
177
+ "normalized": false,
178
+ "rstrip": false,
179
+ "single_word": false,
180
+ "special": false
181
+ },
182
+ "151665": {
183
+ "content": "<img>",
184
+ "lstrip": false,
185
+ "normalized": false,
186
+ "rstrip": false,
187
+ "single_word": false,
188
+ "special": true
189
+ },
190
+ "151666": {
191
+ "content": "</img>",
192
+ "lstrip": false,
193
+ "normalized": false,
194
+ "rstrip": false,
195
+ "single_word": false,
196
+ "special": true
197
+ },
198
+ "151667": {
199
+ "content": "<IMG_CONTEXT>",
200
+ "lstrip": false,
201
+ "normalized": false,
202
+ "rstrip": false,
203
+ "single_word": false,
204
+ "special": true
205
+ },
206
+ "151668": {
207
+ "content": "<quad>",
208
+ "lstrip": false,
209
+ "normalized": false,
210
+ "rstrip": false,
211
+ "single_word": false,
212
+ "special": true
213
+ },
214
+ "151669": {
215
+ "content": "</quad>",
216
+ "lstrip": false,
217
+ "normalized": false,
218
+ "rstrip": false,
219
+ "single_word": false,
220
+ "special": true
221
+ },
222
+ "151670": {
223
+ "content": "<ref>",
224
+ "lstrip": false,
225
+ "normalized": false,
226
+ "rstrip": false,
227
+ "single_word": false,
228
+ "special": true
229
+ },
230
+ "151671": {
231
+ "content": "</ref>",
232
+ "lstrip": false,
233
+ "normalized": false,
234
+ "rstrip": false,
235
+ "single_word": false,
236
+ "special": true
237
+ },
238
+ "151672": {
239
+ "content": "<box>",
240
+ "lstrip": false,
241
+ "normalized": false,
242
+ "rstrip": false,
243
+ "single_word": false,
244
+ "special": true
245
+ },
246
+ "151673": {
247
+ "content": "</box>",
248
+ "lstrip": false,
249
+ "normalized": false,
250
+ "rstrip": false,
251
+ "single_word": false,
252
+ "special": true
253
+ },
254
+ "151674": {
255
+ "content": "<|endoftext|>",
256
+ "lstrip": false,
257
+ "normalized": false,
258
+ "rstrip": false,
259
+ "single_word": false,
260
+ "special": true
261
+ },
262
+ "151675": {
263
+ "content": "<|object_ref_start|>",
264
+ "lstrip": false,
265
+ "normalized": false,
266
+ "rstrip": false,
267
+ "single_word": false,
268
+ "special": true
269
+ },
270
+ "151676": {
271
+ "content": "<|object_ref_end|>",
272
+ "lstrip": false,
273
+ "normalized": false,
274
+ "rstrip": false,
275
+ "single_word": false,
276
+ "special": true
277
+ },
278
+ "151677": {
279
+ "content": "<|box_start|>",
280
+ "lstrip": false,
281
+ "normalized": false,
282
+ "rstrip": false,
283
+ "single_word": false,
284
+ "special": true
285
+ },
286
+ "151678": {
287
+ "content": "<|box_end|>",
288
+ "lstrip": false,
289
+ "normalized": false,
290
+ "rstrip": false,
291
+ "single_word": false,
292
+ "special": true
293
+ }
294
+ },
295
+ "additional_special_tokens": [
296
+ "<|object_ref_start|>",
297
+ "<|object_ref_end|>",
298
+ "<|box_start|>",
299
+ "<|box_end|>",
300
+ "<|quad_start|>",
301
+ "<|quad_end|>",
302
+ "<|vision_start|>",
303
+ "<|vision_end|>",
304
+ "<|vision_pad|>",
305
+ "<|image_pad|>",
306
+ "<|video_pad|>",
307
+ "<img>",
308
+ "</img>",
309
+ "<IMG_CONTEXT>",
310
+ "<quad>",
311
+ "</quad>",
312
+ "<ref>",
313
+ "</ref>",
314
+ "<box>",
315
+ "</box>",
316
+ "<|begin▁of▁sentence|>",
317
+ "<|end▁of▁sentence|>"
318
+ ],
319
+ "bos_token": "<|begin▁of▁sentence|>",
320
+ "chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% set ns = namespace(is_first=false, is_tool=false, is_output_first=true, system_prompt='') %}{%- for message in messages %}{%- if message['role'] == 'system' %}{% set ns.system_prompt = message['content'] %}{%- endif %}{%- endfor %}{{bos_token}}{{ns.system_prompt}}{%- for message in messages %}{%- if message['role'] == 'user' %}{%- set ns.is_tool = false -%}{{'<|User|>' + message['content']}}{%- endif %}{%- if message['role'] == 'assistant' and message['content'] is none %}{%- set ns.is_tool = false -%}{%- for tool in message['tool_calls']%}{%- if not ns.is_first %}{{'<|Assistant|><|tool▁calls▁begin|><|tool▁call▁begin|>' + tool['type'] + '<|tool▁sep|>' + tool['function']['name'] + '\\n' + '```json' + '\\n' + tool['function']['arguments'] + '\\n' + '```' + '<|tool▁call▁end|>'}}{%- set ns.is_first = true -%}{%- else %}{{'\\n' + '<|tool▁call▁begin|>' + tool['type'] + '<|tool▁sep|>' + tool['function']['name'] + '\\n' + '```json' + '\\n' + tool['function']['arguments'] + '\\n' + '```' + '<|tool▁call▁end|>'}}{{'<|tool▁calls▁end|><|end▁of▁sentence|>'}}{%- endif %}{%- endfor %}{%- endif %}{%- if message['role'] == 'assistant' and message['content'] is not none %}{%- if ns.is_tool %}{{'<|tool▁outputs▁end|>' + message['content'] + '<|end▁of▁sentence|>'}}{%- set ns.is_tool = false -%}{%- else %}{% set content = message['content'] %}{% if '</think>' in content %}{% set content = content.split('</think>')[-1] %}{% endif %}{{'<|Assistant|>' + content + '<|end▁of▁sentence|>'}}{%- endif %}{%- endif %}{%- if message['role'] == 'tool' %}{%- set ns.is_tool = true -%}{%- if ns.is_output_first %}{{'<|tool▁outputs▁begin|><|tool▁output▁begin|>' + message['content'] + '<|tool▁output▁end|>'}}{%- set ns.is_output_first = false %}{%- else %}{{'\\n<|tool▁output▁begin|>' + message['content'] + '<|tool▁output▁end|>'}}{%- endif %}{%- endif %}{%- endfor -%}{% if ns.is_tool %}{{'<|tool▁outputs▁end|>'}}{% endif %}{% if add_generation_prompt and not ns.is_tool %}{{'<|Assistant|><think>\\n'}}{% endif %}",
321
+ "clean_up_tokenization_spaces": false,
322
+ "eos_token": "<|end▁of▁sentence|>",
323
+ "legacy": true,
324
+ "model_max_length": 16384,
325
+ "pad_token": "<|endoftext|>",
326
+ "sp_model_kwargs": {},
327
+ "tokenizer_class": "LlamaTokenizer",
328
+ "unk_token": null,
329
+ "use_default_system_prompt": false
330
+ }
zero_to_fp32.py ADDED
@@ -0,0 +1,604 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage <= 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dict = torch.load(f, map_location=device)
147
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
+ # and also handle the case where it was already removed by another helper script
149
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
+ state_dicts.append(state_dict)
151
+
152
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
154
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
+
157
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
159
+ # use the max of the partition_count to get the dp world_size.
160
+
161
+ if type(world_size) is list:
162
+ world_size = max(world_size)
163
+
164
+ if world_size != total_files:
165
+ raise ValueError(
166
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
+ )
169
+
170
+ # the groups are named differently in each stage
171
+ if zero_stage <= 2:
172
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
+ elif zero_stage == 3:
174
+ fp32_groups_key = FP32_FLAT_GROUPS
175
+ else:
176
+ raise ValueError(f"unknown zero stage {zero_stage}")
177
+
178
+ if zero_stage <= 2:
179
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
+ elif zero_stage == 3:
181
+ # if there is more than one param group, there will be multiple flattened tensors - one
182
+ # flattened tensor per group - for simplicity merge them into a single tensor
183
+ #
184
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
185
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
+
187
+ fp32_flat_groups = [
188
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
+ ]
190
+
191
+ return zero_stage, world_size, fp32_flat_groups
192
+
193
+
194
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
195
+ """
196
+ Returns fp32 state_dict reconstructed from ds checkpoint
197
+
198
+ Args:
199
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
+
201
+ """
202
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
+
204
+ optim_files = get_optim_files(ds_checkpoint_dir)
205
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
+
208
+ model_files = get_model_state_files(ds_checkpoint_dir)
209
+
210
+ zero_model_states = parse_model_states(model_files)
211
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
+
213
+ if zero_stage <= 2:
214
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
215
+ exclude_frozen_parameters)
216
+ elif zero_stage == 3:
217
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
218
+ exclude_frozen_parameters)
219
+
220
+
221
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
222
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
223
+ return
224
+
225
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
226
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
227
+
228
+ if debug:
229
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
230
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
231
+
232
+ wanted_params = len(frozen_param_shapes)
233
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
234
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
235
+ print(f'Frozen params: Have {avail_numel} numels to process.')
236
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
237
+
238
+ total_params = 0
239
+ total_numel = 0
240
+ for name, shape in frozen_param_shapes.items():
241
+ total_params += 1
242
+ unpartitioned_numel = shape.numel()
243
+ total_numel += unpartitioned_numel
244
+
245
+ state_dict[name] = frozen_param_fragments[name]
246
+
247
+ if debug:
248
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
249
+
250
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
251
+
252
+
253
+ def _has_callable(obj, fn):
254
+ attr = getattr(obj, fn, None)
255
+ return callable(attr)
256
+
257
+
258
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
259
+ param_shapes = zero_model_states[0].param_shapes
260
+
261
+ # Reconstruction protocol:
262
+ #
263
+ # XXX: document this
264
+
265
+ if debug:
266
+ for i in range(world_size):
267
+ for j in range(len(fp32_flat_groups[0])):
268
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
269
+
270
+ # XXX: memory usage doubles here (zero2)
271
+ num_param_groups = len(fp32_flat_groups[0])
272
+ merged_single_partition_of_fp32_groups = []
273
+ for i in range(num_param_groups):
274
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
275
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
276
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
277
+ avail_numel = sum(
278
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
279
+
280
+ if debug:
281
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
282
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
283
+ # not asserting if there is a mismatch due to possible padding
284
+ print(f"Have {avail_numel} numels to process.")
285
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
286
+
287
+ # params
288
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
289
+ # out-of-core computing solution
290
+ total_numel = 0
291
+ total_params = 0
292
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
293
+ offset = 0
294
+ avail_numel = full_single_fp32_vector.numel()
295
+ for name, shape in shapes.items():
296
+
297
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
298
+ total_numel += unpartitioned_numel
299
+ total_params += 1
300
+
301
+ if debug:
302
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
303
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
304
+ offset += unpartitioned_numel
305
+
306
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
307
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
308
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
309
+ # live optimizer object, so we are checking that the numbers are within the right range
310
+ align_to = 2 * world_size
311
+
312
+ def zero2_align(x):
313
+ return align_to * math.ceil(x / align_to)
314
+
315
+ if debug:
316
+ print(f"original offset={offset}, avail_numel={avail_numel}")
317
+
318
+ offset = zero2_align(offset)
319
+ avail_numel = zero2_align(avail_numel)
320
+
321
+ if debug:
322
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
323
+
324
+ # Sanity check
325
+ if offset != avail_numel:
326
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
327
+
328
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
329
+
330
+
331
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
332
+ exclude_frozen_parameters):
333
+ state_dict = OrderedDict()
334
+
335
+ # buffers
336
+ buffers = zero_model_states[0].buffers
337
+ state_dict.update(buffers)
338
+ if debug:
339
+ print(f"added {len(buffers)} buffers")
340
+
341
+ if not exclude_frozen_parameters:
342
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
343
+
344
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
345
+
346
+ # recover shared parameters
347
+ for pair in zero_model_states[0].shared_params:
348
+ if pair[1] in state_dict:
349
+ state_dict[pair[0]] = state_dict[pair[1]]
350
+
351
+ return state_dict
352
+
353
+
354
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
355
+ remainder = unpartitioned_numel % world_size
356
+ padding_numel = (world_size - remainder) if remainder else 0
357
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
358
+ return partitioned_numel, padding_numel
359
+
360
+
361
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
362
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
363
+ return
364
+
365
+ if debug:
366
+ for i in range(world_size):
367
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
368
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
369
+
370
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
371
+ wanted_params = len(frozen_param_shapes)
372
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
373
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
374
+ print(f'Frozen params: Have {avail_numel} numels to process.')
375
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
376
+
377
+ total_params = 0
378
+ total_numel = 0
379
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
380
+ total_params += 1
381
+ unpartitioned_numel = shape.numel()
382
+ total_numel += unpartitioned_numel
383
+
384
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
385
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
386
+
387
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
388
+
389
+ if debug:
390
+ print(
391
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
392
+ )
393
+
394
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
395
+
396
+
397
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
398
+ param_shapes = zero_model_states[0].param_shapes
399
+ avail_numel = fp32_flat_groups[0].numel() * world_size
400
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
401
+ # param, re-consolidating each param, while dealing with padding if any
402
+
403
+ # merge list of dicts, preserving order
404
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
405
+
406
+ if debug:
407
+ for i in range(world_size):
408
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
409
+
410
+ wanted_params = len(param_shapes)
411
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
412
+ # not asserting if there is a mismatch due to possible padding
413
+ avail_numel = fp32_flat_groups[0].numel() * world_size
414
+ print(f"Trainable params: Have {avail_numel} numels to process.")
415
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
416
+
417
+ # params
418
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
419
+ # out-of-core computing solution
420
+ offset = 0
421
+ total_numel = 0
422
+ total_params = 0
423
+ for name, shape in param_shapes.items():
424
+
425
+ unpartitioned_numel = shape.numel()
426
+ total_numel += unpartitioned_numel
427
+ total_params += 1
428
+
429
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
430
+
431
+ if debug:
432
+ print(
433
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
434
+ )
435
+
436
+ # XXX: memory usage doubles here
437
+ state_dict[name] = torch.cat(
438
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
439
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
440
+ offset += partitioned_numel
441
+
442
+ offset *= world_size
443
+
444
+ # Sanity check
445
+ if offset != avail_numel:
446
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
447
+
448
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
449
+
450
+
451
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
452
+ exclude_frozen_parameters):
453
+ state_dict = OrderedDict()
454
+
455
+ # buffers
456
+ buffers = zero_model_states[0].buffers
457
+ state_dict.update(buffers)
458
+ if debug:
459
+ print(f"added {len(buffers)} buffers")
460
+
461
+ if not exclude_frozen_parameters:
462
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
463
+
464
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
465
+
466
+ # recover shared parameters
467
+ for pair in zero_model_states[0].shared_params:
468
+ if pair[1] in state_dict:
469
+ state_dict[pair[0]] = state_dict[pair[1]]
470
+
471
+ return state_dict
472
+
473
+
474
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
475
+ """
476
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
477
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
478
+ via a model hub.
479
+
480
+ Args:
481
+ - ``checkpoint_dir``: path to the desired checkpoint folder
482
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
483
+ - ``exclude_frozen_parameters``: exclude frozen parameters
484
+
485
+ Returns:
486
+ - pytorch ``state_dict``
487
+
488
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
489
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
490
+ the checkpoint.
491
+
492
+ A typical usage might be ::
493
+
494
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
495
+ # do the training and checkpoint saving
496
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
497
+ model = model.cpu() # move to cpu
498
+ model.load_state_dict(state_dict)
499
+ # submit to model hub or save the model to share with others
500
+
501
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
502
+ application. i.e. you will need to re-initialize the deepspeed engine, since
503
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
504
+
505
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
506
+
507
+ """
508
+ if tag is None:
509
+ latest_path = os.path.join(checkpoint_dir, 'latest')
510
+ if os.path.isfile(latest_path):
511
+ with open(latest_path, 'r') as fd:
512
+ tag = fd.read().strip()
513
+ else:
514
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
515
+
516
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
517
+
518
+ if not os.path.isdir(ds_checkpoint_dir):
519
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
520
+
521
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
522
+
523
+
524
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
525
+ """
526
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
527
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
528
+
529
+ Args:
530
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
531
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
532
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
533
+ - ``exclude_frozen_parameters``: exclude frozen parameters
534
+ """
535
+
536
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
537
+ print(f"Saving fp32 state dict to {output_file}")
538
+ torch.save(state_dict, output_file)
539
+
540
+
541
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
542
+ """
543
+ 1. Put the provided model to cpu
544
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
545
+ 3. Load it into the provided model
546
+
547
+ Args:
548
+ - ``model``: the model object to update
549
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
550
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
551
+
552
+ Returns:
553
+ - ``model`: modified model
554
+
555
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
556
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
557
+ conveniently placed for you in the checkpoint folder.
558
+
559
+ A typical usage might be ::
560
+
561
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
562
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
563
+ # submit to model hub or save the model to share with others
564
+
565
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
566
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
567
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
568
+
569
+ """
570
+ logger.info(f"Extracting fp32 weights")
571
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
572
+
573
+ logger.info(f"Overwriting model with fp32 weights")
574
+ model = model.cpu()
575
+ model.load_state_dict(state_dict, strict=False)
576
+
577
+ return model
578
+
579
+
580
+ if __name__ == "__main__":
581
+
582
+ parser = argparse.ArgumentParser()
583
+ parser.add_argument("checkpoint_dir",
584
+ type=str,
585
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
586
+ parser.add_argument(
587
+ "output_file",
588
+ type=str,
589
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
590
+ parser.add_argument("-t",
591
+ "--tag",
592
+ type=str,
593
+ default=None,
594
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
595
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
596
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
597
+ args = parser.parse_args()
598
+
599
+ debug = args.debug
600
+
601
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
602
+ args.output_file,
603
+ tag=args.tag,
604
+ exclude_frozen_parameters=args.exclude_frozen_parameters)