Image-Text-to-Text
Transformers
PyTorch
internvl_chat
conversational
custom_code

Skywork-R1V-38B-AWQ

Introduction Image

📖 Technical Report | 💻 GitHub | 🌐 Wisemodel

GitHub Stars GitHub Forks

Evaluation

Comparison with Larger-Scale Open-Source and Closed-Source Models
Benchmark LLM VLM
QwQ-32B-Preview InternVL-2.5-38B VILA 1.5-40B InternVL2-40B Skywork-R1V-38B Skywork-R1V-AWQ
Reasoning MATH-500 90.6 - - - 94.0 86.0
AIME 2024 50.0 - - - 72.0 61.0
GPQA 54.5 - - - 61.6 56.5
Vision MathVista(mini) - 71.9 49.5 63.7 67.5 59.9
MMMU(Val) - 63.9 55.1 55.2 69.0 60.1

Usage

You can use the quantized model with different inference frameworks:

Using VLLM

Python API

import os
from vllm import LLM, SamplingParams
from vllm.entrypoints.chat_utils import load_chat_template

model_name = "Skywork/Skywork-R1V-38B-AWQ"  # or local path
llm = LLM(model_name, 
          dtype='float16', 
          quantization="awq", 
          gpu_memory_utilization=0.85,
          max_model_len=4096,
          trust_remote_code=True,
         )

# Add your inference code here

OpenAI-compatible API Server

MODEL_ID="Skywork/Skywork-R1V-38B-AWQ"  # or local path


CUDA_VISIBLE_DEVICES=0 \
    python -m vllm.entrypoints.openai.api_server \
    --model $MODEL_ID \
    --dtype float16 \
    --quantization awq \
    --port 23334 \
    --max-model-len 12000 \
    --gpu-memory-utilization 0.9 \
    --trust-remote-code

Using LMDeploy

import os
from lmdeploy import pipeline, TurbomindEngineConfig, ChatTemplateConfig
from lmdeploy.vl import load_image

model_path = "Skywork/Skywork-R1V-38B-AWQ"  # or local path

engine_config = TurbomindEngineConfig(cache_max_entry_count=0.75) 
chat_template_config = ChatTemplateConfig(model_name=model_path)
pipe = pipeline(model_path, 
                backend_config=engine_config, 
                chat_template_config=chat_template_config,
               )

# Example: Multimodal inference
image = load_image('table.jpg')
response = pipe(('Describe this image?', image))
print(response.text)

Hardware Requirements

The AWQ quantization reduces the memory footprint compared to the original FP16 model. We recommend:

  • At least one GPU with 30GB+ VRAM for inference
  • For optimal performance with longer contexts, 40GB+ VRAM is recommended

Citation

If you use this model in your research, please cite:

@misc{shen2025skyworkr1v3technicalreport,
      title={Skywork-R1V3 Technical Report}, 
      author={Wei Shen and Jiangbo Pei and Yi Peng and Xuchen Song and Yang Liu and Jian Peng and Haofeng Sun and Yunzhuo Hao and Peiyu Wang and Jianhao Zhang and Yahui Zhou},
      year={2025},
      eprint={2507.06167},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2507.06167}, 
}
@misc{chris2025skyworkr1v2multimodalhybrid,
      title={Skywork R1V2: Multimodal Hybrid Reinforcement Learning for Reasoning}, 
      author={Peiyu Wang and Yichen Wei and Yi Peng and Xiaokun Wang and Weijie Qiu and Wei Shen and Tianyidan Xie and Jiangbo Pei and Jianhao Zhang and Yunzhuo Hao and Xuchen Song and Yang Liu and Yahui Zhou},
      year={2025},
      eprint={2504.16656},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2504.16656}, 
}
@misc{peng2025skyworkr1vpioneeringmultimodal,
      title={Skywork R1V: Pioneering Multimodal Reasoning with Chain-of-Thought}, 
      author={Yi Peng and Peiyu Wang and Xiaokun Wang and Yichen Wei and Jiangbo Pei and Weijie Qiu and Ai Jian and Yunzhuo Hao and Jiachun Pan and Tianyidan Xie and Li Ge and Rongxian Zhuang and Xuchen Song and Yang Liu and Yahui Zhou},
      year={2025},
      eprint={2504.05599},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2504.05599}, 
}
Downloads last month
26
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Collection including Skywork/Skywork-R1V-38B-AWQ