Update README.md
Browse files
README.md
CHANGED
@@ -13,21 +13,84 @@
|
|
13 |
</div>
|
14 |
|
15 |
|
16 |
-
##
|
17 |
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|-----------|-------|
|
22 |
-
| MMMU | 0.6 |
|
23 |
-
| MathV | 0.59 |
|
24 |
-
| AIME_2024 | 0.6 |
|
25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
## Usage
|
28 |
-
|
29 |
You can use the quantized model with different inference frameworks:
|
30 |
-
|
31 |
### Using VLLM
|
32 |
|
33 |
#### Python API
|
@@ -111,19 +174,8 @@ If you use this model in your research, please cite:
|
|
111 |
|
112 |
# Skywork-R1V-38B-AWQ (中文说明)
|
113 |
|
114 |
-
## 基准测试结果
|
115 |
-
|
116 |
-
AWQ 量化模型在关键基准测试中保持了强劲的性能:
|
117 |
-
|
118 |
-
| 基准测试 | 分数 |
|
119 |
-
|-----------|-------|
|
120 |
-
| MMMU | 0.6 |
|
121 |
-
| MathV | 0.59 |
|
122 |
-
| AIME_2024 | 0.6 |
|
123 |
-
|
124 |
|
125 |
## 使用方法
|
126 |
-
|
127 |
您可以使用不同的推理框架来使用这个量化模型:
|
128 |
|
129 |
### 使用 VLLM
|
|
|
13 |
</div>
|
14 |
|
15 |
|
16 |
+
## Evaluation
|
17 |
|
18 |
+
<div align="center">
|
19 |
+
<b>Comparison with Larger-Scale Open-Source and Closed-Source Models</b>
|
20 |
+
</div>
|
|
|
|
|
|
|
|
|
21 |
|
22 |
+
<table align="center">
|
23 |
+
<thead>
|
24 |
+
<tr>
|
25 |
+
<th></th>
|
26 |
+
<th align="center"><strong>Benchmark</strong></th>
|
27 |
+
<th align="center"><strong>LLM</strong></th>
|
28 |
+
<th align="center" colspan="5"><strong>VLM</strong></th>
|
29 |
+
</tr>
|
30 |
+
<tr>
|
31 |
+
<th></th>
|
32 |
+
<th></th>
|
33 |
+
<th align="center"><strong>QwQ-32B-Preview</strong></th>
|
34 |
+
<th align="center"><strong>InternVL-2.5-38B</strong></th>
|
35 |
+
<th align="center"><strong>VILA 1.5-40B</strong></th>
|
36 |
+
<th align="center"><strong>InternVL2-40B</strong></th>
|
37 |
+
<th align="center"><strong>Skywork-R1V-38B</strong></th>
|
38 |
+
<th align="center"><strong>Skywork-R1V-AWQ</strong></th>
|
39 |
+
</tr>
|
40 |
+
</thead>
|
41 |
+
<tbody>
|
42 |
+
<tr>
|
43 |
+
<td rowspan="3">Reasoning</td>
|
44 |
+
<td>MATH-500</td>
|
45 |
+
<td align="center">90.6</td>
|
46 |
+
<td align="center">-</td>
|
47 |
+
<td align="center">-</td>
|
48 |
+
<td align="center">-</td>
|
49 |
+
<td align="center"><strong>94.0</strong></td>
|
50 |
+
<td align="center">86.0</td>
|
51 |
+
</tr>
|
52 |
+
<tr>
|
53 |
+
<td>AIME 2024</td>
|
54 |
+
<td align="center">50.0</td>
|
55 |
+
<td align="center">-</td>
|
56 |
+
<td align="center">-</td>
|
57 |
+
<td align="center">-</td>
|
58 |
+
<td align="center"><strong>72.0</strong></td>
|
59 |
+
<td align="center">61.0</td>
|
60 |
+
</tr>
|
61 |
+
<tr>
|
62 |
+
<td>GPQA</td>
|
63 |
+
<td align="center">54.5</td>
|
64 |
+
<td align="center">-</td>
|
65 |
+
<td align="center">-</td>
|
66 |
+
<td align="center">-</td>
|
67 |
+
<td align="center"><strong>61.6</strong></td>
|
68 |
+
<td align="center">56.5</td>
|
69 |
+
</tr>
|
70 |
+
<tr>
|
71 |
+
<td rowspan="2">Vision</td>
|
72 |
+
<td>MathVista(mini)</td>
|
73 |
+
<td align="center">-</td>
|
74 |
+
<td align="center">71.9</td>
|
75 |
+
<td align="center">49.5</td>
|
76 |
+
<td align="center">63.7</td>
|
77 |
+
<td align="center">67.5</td>
|
78 |
+
<td align="center">59.9</td>
|
79 |
+
</tr>
|
80 |
+
<tr>
|
81 |
+
<td>MMMU(Val)</td>
|
82 |
+
<td align="center">-</td>
|
83 |
+
<td align="center">63.9</td>
|
84 |
+
<td align="center">55.1</td>
|
85 |
+
<td align="center">55.2</td>
|
86 |
+
<td align="center"><strong>69.0</strong></td>
|
87 |
+
<td align="center">60.1</td>
|
88 |
+
</tr>
|
89 |
+
</tbody>
|
90 |
+
</table>
|
91 |
|
92 |
## Usage
|
|
|
93 |
You can use the quantized model with different inference frameworks:
|
|
|
94 |
### Using VLLM
|
95 |
|
96 |
#### Python API
|
|
|
174 |
|
175 |
# Skywork-R1V-38B-AWQ (中文说明)
|
176 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
177 |
|
178 |
## 使用方法
|
|
|
179 |
您可以使用不同的推理框架来使用这个量化模型:
|
180 |
|
181 |
### 使用 VLLM
|