|
--- |
|
library_name: stable-baselines3 |
|
tags: |
|
- AntBulletEnv-v0 |
|
- deep-reinforcement-learning |
|
- reinforcement-learning |
|
- stable-baselines3 |
|
model-index: |
|
- name: A2C |
|
results: |
|
- metrics: |
|
- type: mean_reward |
|
value: 1218.38 +/- 203.74 |
|
name: mean_reward |
|
task: |
|
type: reinforcement-learning |
|
name: reinforcement-learning |
|
dataset: |
|
name: AntBulletEnv-v0 |
|
type: AntBulletEnv-v0 |
|
--- |
|
|
|
# **A2C** Agent playing **AntBulletEnv-v0** |
|
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** |
|
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). |
|
|
|
## Usage (with Stable-baselines3) |
|
## parameters |
|
|
|
```python |
|
model = A2C(policy = "MlpPolicy", |
|
env = env, |
|
gae_lambda = 0.9, |
|
gamma = 0.99, |
|
learning_rate = 0.00096, |
|
max_grad_norm = 0.5, |
|
n_steps = 8, |
|
vf_coef = 0.4, |
|
ent_coef = 0.0, |
|
tensorboard_log = "./tensorboard", |
|
policy_kwargs=dict( |
|
log_std_init=-2, ortho_init=False), |
|
normalize_advantage=False, |
|
use_rms_prop= True, |
|
use_sde= True, |
|
verbose=1) |
|
... |
|
``` |
|
|