Quantised-models
Collection
23 items
•
Updated
from transformers import AutoModelForCausalLM, AutoTokenizer
device = "cuda"
model_path =
tokenizer = AutoTokenizer.from_pretrained(model_path)
# drop device_map if running on CPU
model = AutoModelForCausalLM.from_pretrained(model_path, device_map=device)
model.eval()
# change input text as desired
input_text = "Where is the Thomas J. Watson Research Center located?"
# tokenize the text
input_tokens = tokenizer(input_text, return_tensors="pt").to(device)
# generate output tokens
output = model.generate(**input_tokens,
max_length=4000)
# decode output tokens into text
output = tokenizer.batch_decode(output)
# print output
print(output)