SentenceTransformer based on Shuu12121/CodeModernBERT-Owl

This is a sentence-transformers model finetuned from Shuu12121/CodeModernBERT-Owl. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: Shuu12121/CodeModernBERT-Owl
  • Maximum Sequence Length: 2048 tokens
  • Output Dimensionality: 768 dimensions
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 2048, 'do_lower_case': False}) with Transformer model: ModernBertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'Write combining tables to filesystem as python code.',
    'def _do_write(fname, variable, version, date, table):\n        \n        # pylint: disable=R0914\n        #         Too many local variables (19/15) (col 4)\n        print("writing {} ..".format(fname))\n        import unicodedata\n        import datetime\n        import string\n        utc_now = datetime.datetime.utcnow()\n        indent = 4\n        with open(fname, \'w\') as fout:\n            fout.write(\n                \'\\n\'\n                "# Generated: {iso_utc}\\n"\n                "# Source: {version}\\n"\n                "# Date: {date}\\n"\n                "{variable} = (".format(iso_utc=utc_now.isoformat(),\n                                        version=version,\n                                        date=date,\n                                        variable=variable,\n                                        variable_proper=variable.title()))\n            for start, end in table:\n                ucs_start, ucs_end = unichr(start), unichr(end)\n                hex_start, hex_end = (\'0x{0:04x}\'.format(start),\n                                      \'0x{0:04x}\'.format(end))\n                try:\n                    name_start = string.capwords(unicodedata.name(ucs_start))\n                except ValueError:\n                    name_start = u\'\'\n                try:\n                    name_end = string.capwords(unicodedata.name(ucs_end))\n                except ValueError:\n                    name_end = u\'\'\n                fout.write(\'\\n\' + (\' \' * indent))\n                fout.write(\'({0}, {1},),\'.format(hex_start, hex_end))\n                fout.write(\'  # {0:24s}..{1}\'.format(\n                    name_start[:24].rstrip() or \'(nil)\',\n                    name_end[:24].rstrip()))\n            fout.write(\'\\n)\\n\')\n        print("complete.")',
    'def RGB_to_HSV(cobj, *args, **kwargs):\n    \n    var_R = cobj.rgb_r\n    var_G = cobj.rgb_g\n    var_B = cobj.rgb_b\n\n    var_max = max(var_R, var_G, var_B)\n    var_min = min(var_R, var_G, var_B)\n\n    var_H = __RGB_to_Hue(var_R, var_G, var_B, var_min, var_max)\n\n    if var_max == 0:\n        var_S = 0\n    else:\n        var_S = 1.0 - (var_min / var_max)\n\n    var_V = var_max\n\n    return HSVColor(\n        var_H, var_S, var_V)',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.5568
cosine_accuracy@3 0.8609
cosine_accuracy@5 0.9019
cosine_accuracy@10 0.9297
cosine_precision@1 0.5568
cosine_precision@3 0.287
cosine_precision@5 0.1804
cosine_precision@10 0.093
cosine_recall@1 0.5568
cosine_recall@3 0.8609
cosine_recall@5 0.9019
cosine_recall@10 0.9297
cosine_ndcg@10 0.7695
cosine_mrr@10 0.7155
cosine_map@100 0.7173

Training Details

Training Dataset

Unnamed Dataset

  • Size: 1,455,632 training samples
  • Columns: sentence_0, sentence_1, and label
  • Approximate statistics based on the first 1000 samples:
    sentence_0 sentence_1 label
    type string string float
    details
    • min: 5 tokens
    • mean: 96.39 tokens
    • max: 2048 tokens
    • min: 27 tokens
    • mean: 159.11 tokens
    • max: 889 tokens
    • min: 1.0
    • mean: 1.0
    • max: 1.0
  • Samples:
    sentence_0 sentence_1 label
    Set the text for this element.

    Arguments:
    text (str): The text
    cls (str): The class of the text, defaults to current (leave this unless you know what you are doing). There may be only one text content element of each class associated with the element.
    def settext(self, text, cls='current'):

    self.replace(TextContent, value=text, cls=cls)
    1.0
    Associate a document with this element.

    Arguments:
    doc (:class:Document): A document

    Each element must be associated with a FoLiA document.
    def setdocument(self, doc):

    assert isinstance(doc, Document)

    if not self.doc:
    self.doc = doc
    if self.id:
    if self.id in doc:
    raise DuplicateIDError(self.id)
    else:
    self.doc.index[id] = self

    for e in self: #recursive for all children
    if isinstance(e,AbstractElement): e.setdocument(doc)
    1.0
    Tests whether a new element of this class can be added to the parent.

    This method is mostly for internal use.
    This will use the OCCURRENCES property, but may be overidden by subclasses for more customised behaviour.

    Parameters:
    parent (:class:AbstractElement): The element that is being added to
    set (str or None): The set
    raiseexceptions (bool): Raise an exception if the element can't be added?

    Returns:
    bool

    Raises:
    ValueError
    def addable(Class, parent, set=None, raiseexceptions=True):



    if not parent.class.accepts(Class, raiseexceptions, parent):
    return False

    if Class.OCCURRENCES > 0:
    #check if the parent doesn't have too many already
    count = parent.count(Class,None,True,[True, AbstractStructureElement]) #never descend into embedded structure annotatioton
    if count >= Class.OCCURRENCES:
    if raiseexceptions:
    if parent.id:
    extra = ' (id=' + parent.id + ')'
    else:
    extra = ''
    raise DuplicateAnnotationError("Unable to add another object of type " + Class.name + " to " + parent.class.name + " " + extra + ". There are already " + str(count) + " instances of this class, which is the maximum.")
    else:
    return False

    if Class.OCCURRENCES_PER_SET > 0 and set and Class.R...
    1.0
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 24
  • per_device_eval_batch_size: 24
  • num_train_epochs: 5
  • fp16: True
  • multi_dataset_batch_sampler: round_robin

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 24
  • per_device_eval_batch_size: 24
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1
  • num_train_epochs: 5
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • tp_size: 0
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: round_robin

Training Logs

Click to expand
Epoch Step Training Loss code-docstring-retrieval_cosine_ndcg@10
0.0082 500 0.974 -
0.0165 1000 0.1263 -
0.0247 1500 0.0996 -
0.0330 2000 0.0846 -
0.0412 2500 0.0897 -
0.0495 3000 0.0788 -
0.0577 3500 0.0738 -
0.0660 4000 0.0738 -
0.0742 4500 0.0709 -
0.0824 5000 0.0677 0.7449
0.0907 5500 0.0679 -
0.0989 6000 0.0677 -
0.1072 6500 0.0667 -
0.1154 7000 0.0625 -
0.1237 7500 0.0579 -
0.1319 8000 0.0635 -
0.1401 8500 0.0612 -
0.1484 9000 0.0561 -
0.1566 9500 0.0592 -
0.1649 10000 0.0608 0.7534
0.1731 10500 0.0534 -
0.1814 11000 0.0599 -
0.1896 11500 0.0554 -
0.1979 12000 0.0596 -
0.2061 12500 0.0553 -
0.2143 13000 0.0483 -
0.2226 13500 0.0497 -
0.2308 14000 0.0523 -
0.2391 14500 0.0541 -
0.2473 15000 0.0499 0.7543
0.2556 15500 0.0527 -
0.2638 16000 0.0464 -
0.2720 16500 0.0467 -
0.2803 17000 0.0523 -
0.2885 17500 0.0502 -
0.2968 18000 0.0511 -
0.3050 18500 0.042 -
0.3133 19000 0.0515 -
0.3215 19500 0.0488 -
0.3298 20000 0.0493 0.7556
0.3380 20500 0.0432 -
0.3462 21000 0.0485 -
0.3545 21500 0.0406 -
0.3627 22000 0.0436 -
0.3710 22500 0.0439 -
0.3792 23000 0.0464 -
0.3875 23500 0.0392 -
0.3957 24000 0.0421 -
0.4039 24500 0.0427 -
0.4122 25000 0.0406 0.7559
0.4204 25500 0.049 -
0.4287 26000 0.0407 -
0.4369 26500 0.044 -
0.4452 27000 0.0424 -
0.4534 27500 0.0399 -
0.4617 28000 0.0417 -
0.4699 28500 0.0399 -
0.4781 29000 0.0418 -
0.4864 29500 0.043 -
0.4946 30000 0.0425 0.7556
0.5029 30500 0.0428 -
0.5111 31000 0.0452 -
0.5194 31500 0.0432 -
0.5276 32000 0.0387 -
0.5358 32500 0.0389 -
0.5441 33000 0.0436 -
0.5523 33500 0.04 -
0.5606 34000 0.0407 -
0.5688 34500 0.0437 -
0.5771 35000 0.0404 0.7604
0.5853 35500 0.0361 -
0.5936 36000 0.0382 -
0.6018 36500 0.0407 -
0.6100 37000 0.0335 -
0.6183 37500 0.0431 -
0.6265 38000 0.0422 -
0.6348 38500 0.0414 -
0.6430 39000 0.0364 -
0.6513 39500 0.0373 -
0.6595 40000 0.0392 0.7590
0.6677 40500 0.0373 -
0.6760 41000 0.0389 -
0.6842 41500 0.0367 -
0.6925 42000 0.0329 -
0.7007 42500 0.0367 -
0.7090 43000 0.0386 -
0.7172 43500 0.0342 -
0.7255 44000 0.0332 -
0.7337 44500 0.0352 -
0.7419 45000 0.0348 0.7572
0.7502 45500 0.038 -
0.7584 46000 0.03 -
0.7667 46500 0.0357 -
0.7749 47000 0.0382 -
0.7832 47500 0.0386 -
0.7914 48000 0.0345 -
0.7996 48500 0.0349 -
0.8079 49000 0.0338 -
0.8161 49500 0.0346 -
0.8244 50000 0.0401 0.7600
0.8326 50500 0.0322 -
0.8409 51000 0.0372 -
0.8491 51500 0.0315 -
0.8574 52000 0.0353 -
0.8656 52500 0.0324 -
0.8738 53000 0.0354 -
0.8821 53500 0.0359 -
0.8903 54000 0.0349 -
0.8986 54500 0.0361 -
0.9068 55000 0.0394 0.7587
0.9151 55500 0.0367 -
0.9233 56000 0.0274 -
0.9315 56500 0.0333 -
0.9398 57000 0.0337 -
0.9480 57500 0.0335 -
0.9563 58000 0.0336 -
0.9645 58500 0.0323 -
0.9728 59000 0.0326 -
0.9810 59500 0.034 -
0.9893 60000 0.0272 0.7566
0.9975 60500 0.0283 -
1.0 60652 - 0.7574
1.0057 61000 0.0228 -
1.0140 61500 0.0125 -
1.0222 62000 0.0178 -
1.0305 62500 0.0129 -
1.0387 63000 0.0155 -
1.0470 63500 0.0154 -
1.0552 64000 0.0121 -
1.0634 64500 0.0147 -
1.0717 65000 0.0177 0.7582
1.0799 65500 0.0156 -
1.0882 66000 0.0159 -
1.0964 66500 0.0137 -
1.1047 67000 0.014 -
1.1129 67500 0.0152 -
1.1212 68000 0.0137 -
1.1294 68500 0.0133 -
1.1376 69000 0.0174 -
1.1459 69500 0.0165 -
1.1541 70000 0.0147 0.7600
1.1624 70500 0.0165 -
1.1706 71000 0.012 -
1.1789 71500 0.0138 -
1.1871 72000 0.0121 -
1.1953 72500 0.0163 -
1.2036 73000 0.0139 -
1.2118 73500 0.0136 -
1.2201 74000 0.0127 -
1.2283 74500 0.0164 -
1.2366 75000 0.0166 0.7610
1.2448 75500 0.0163 -
1.2531 76000 0.0146 -
1.2613 76500 0.0118 -
1.2695 77000 0.0139 -
1.2778 77500 0.0205 -
1.2860 78000 0.0166 -
1.2943 78500 0.0125 -
1.3025 79000 0.0172 -
1.3108 79500 0.0132 -
1.3190 80000 0.0149 0.7604
1.3272 80500 0.0128 -
1.3355 81000 0.0182 -
1.3437 81500 0.014 -
1.3520 82000 0.0172 -
1.3602 82500 0.0148 -
1.3685 83000 0.014 -
1.3767 83500 0.0154 -
1.3850 84000 0.013 -
1.3932 84500 0.0135 -
1.4014 85000 0.0151 0.7625
1.4097 85500 0.016 -
1.4179 86000 0.0127 -
1.4262 86500 0.0147 -
1.4344 87000 0.0157 -
1.4427 87500 0.0159 -
1.4509 88000 0.0146 -
1.4591 88500 0.0134 -
1.4674 89000 0.0177 -
1.4756 89500 0.0165 -
1.4839 90000 0.0167 0.7619
1.4921 90500 0.0189 -
1.5004 91000 0.0157 -
1.5086 91500 0.0147 -
1.5169 92000 0.0142 -
1.5251 92500 0.0161 -
1.5333 93000 0.0139 -
1.5416 93500 0.0142 -
1.5498 94000 0.0151 -
1.5581 94500 0.0156 -
1.5663 95000 0.0137 0.7595
1.5746 95500 0.0114 -
1.5828 96000 0.0126 -
1.5910 96500 0.0148 -
1.5993 97000 0.0122 -
1.6075 97500 0.0171 -
1.6158 98000 0.0147 -
1.6240 98500 0.0167 -
1.6323 99000 0.0175 -
1.6405 99500 0.0137 -
1.6488 100000 0.014 0.7591
1.6570 100500 0.0132 -
1.6652 101000 0.0167 -
1.6735 101500 0.0145 -
1.6817 102000 0.013 -
1.6900 102500 0.0161 -
1.6982 103000 0.0136 -
1.7065 103500 0.0131 -
1.7147 104000 0.016 -
1.7229 104500 0.0148 -
1.7312 105000 0.0134 0.7617
1.7394 105500 0.0141 -
1.7477 106000 0.0154 -
1.7559 106500 0.0154 -
1.7642 107000 0.0147 -
1.7724 107500 0.0134 -
1.7807 108000 0.0129 -
1.7889 108500 0.0135 -
1.7971 109000 0.0157 -
1.8054 109500 0.0142 -
1.8136 110000 0.0159 0.7614
1.8219 110500 0.0151 -
1.8301 111000 0.0114 -
1.8384 111500 0.0126 -
1.8466 112000 0.0153 -
1.8548 112500 0.0159 -
1.8631 113000 0.0131 -
1.8713 113500 0.0168 -
1.8796 114000 0.0148 -
1.8878 114500 0.0144 -
1.8961 115000 0.0127 0.7605
1.9043 115500 0.0179 -
1.9126 116000 0.0131 -
1.9208 116500 0.0154 -
1.9290 117000 0.0163 -
1.9373 117500 0.0114 -
1.9455 118000 0.0141 -
1.9538 118500 0.018 -
1.9620 119000 0.0147 -
1.9703 119500 0.0119 -
1.9785 120000 0.0133 0.7617
1.9867 120500 0.015 -
1.9950 121000 0.0144 -
2.0 121304 - 0.7652
2.0032 121500 0.0116 -
2.0115 122000 0.0072 -
2.0197 122500 0.0069 -
2.0280 123000 0.0071 -
2.0362 123500 0.0044 -
2.0445 124000 0.0069 -
2.0527 124500 0.0059 -
2.0609 125000 0.0061 0.7625
2.0692 125500 0.0067 -
2.0774 126000 0.0065 -
2.0857 126500 0.007 -
2.0939 127000 0.0056 -
2.1022 127500 0.006 -
2.1104 128000 0.0076 -
2.1186 128500 0.0069 -
2.1269 129000 0.0064 -
2.1351 129500 0.0082 -
2.1434 130000 0.0053 0.7613
2.1516 130500 0.0045 -
2.1599 131000 0.0059 -
2.1681 131500 0.0071 -
2.1764 132000 0.0076 -
2.1846 132500 0.0067 -
2.1928 133000 0.0061 -
2.2011 133500 0.0073 -
2.2093 134000 0.008 -
2.2176 134500 0.0079 -
2.2258 135000 0.0076 0.7662
2.2341 135500 0.0085 -
2.2423 136000 0.0048 -
2.2505 136500 0.0076 -
2.2588 137000 0.0069 -
2.2670 137500 0.007 -
2.2753 138000 0.0064 -
2.2835 138500 0.0072 -
2.2918 139000 0.0054 -
2.3000 139500 0.0068 -
2.3083 140000 0.0066 0.7638
2.3165 140500 0.0072 -
2.3247 141000 0.0078 -
2.3330 141500 0.0077 -
2.3412 142000 0.0066 -
2.3495 142500 0.0084 -
2.3577 143000 0.0063 -
2.3660 143500 0.0064 -
2.3742 144000 0.0058 -
2.3824 144500 0.0076 -
2.3907 145000 0.0072 0.7628
2.3989 145500 0.0076 -
2.4072 146000 0.0068 -
2.4154 146500 0.0051 -
2.4237 147000 0.0056 -
2.4319 147500 0.0076 -
2.4402 148000 0.0065 -
2.4484 148500 0.0088 -
2.4566 149000 0.0053 -
2.4649 149500 0.0059 -
2.4731 150000 0.005 0.7642
2.4814 150500 0.0072 -
2.4896 151000 0.0078 -
2.4979 151500 0.0058 -
2.5061 152000 0.0072 -
2.5143 152500 0.006 -
2.5226 153000 0.0075 -
2.5308 153500 0.007 -
2.5391 154000 0.0076 -
2.5473 154500 0.0059 -
2.5556 155000 0.0066 0.7633
2.5638 155500 0.0047 -
2.5721 156000 0.0061 -
2.5803 156500 0.0063 -
2.5885 157000 0.0071 -
2.5968 157500 0.005 -
2.6050 158000 0.0082 -
2.6133 158500 0.0061 -
2.6215 159000 0.006 -
2.6298 159500 0.0073 -
2.6380 160000 0.0063 0.7645
2.6462 160500 0.0069 -
2.6545 161000 0.0056 -
2.6627 161500 0.0077 -
2.6710 162000 0.0082 -
2.6792 162500 0.0072 -
2.6875 163000 0.0073 -
2.6957 163500 0.0088 -
2.7040 164000 0.0048 -
2.7122 164500 0.0064 -
2.7204 165000 0.0067 0.7647
2.7287 165500 0.0065 -
2.7369 166000 0.0083 -
2.7452 166500 0.0055 -
2.7534 167000 0.0041 -
2.7617 167500 0.0063 -
2.7699 168000 0.0067 -
2.7781 168500 0.0059 -
2.7864 169000 0.01 -
2.7946 169500 0.005 -
2.8029 170000 0.0061 0.7636
2.8111 170500 0.0069 -
2.8194 171000 0.0046 -
2.8276 171500 0.0071 -
2.8359 172000 0.0078 -
2.8441 172500 0.0078 -
2.8523 173000 0.0083 -
2.8606 173500 0.0069 -
2.8688 174000 0.0067 -
2.8771 174500 0.0065 -
2.8853 175000 0.0064 0.7646
2.8936 175500 0.0064 -
2.9018 176000 0.0067 -
2.9100 176500 0.0054 -
2.9183 177000 0.0061 -
2.9265 177500 0.0074 -
2.9348 178000 0.0056 -
2.9430 178500 0.0072 -
2.9513 179000 0.0064 -
2.9595 179500 0.0077 -
2.9678 180000 0.0056 0.7651
2.9760 180500 0.0068 -
2.9842 181000 0.0063 -
2.9925 181500 0.007 -
3.0 181956 - 0.7631
3.0007 182000 0.0073 -
3.0090 182500 0.0031 -
3.0172 183000 0.0044 -
3.0255 183500 0.0043 -
3.0337 184000 0.0056 -
3.0419 184500 0.0054 -
3.0502 185000 0.0051 0.7631
3.0584 185500 0.0044 -
3.0667 186000 0.0047 -
3.0749 186500 0.0041 -
3.0832 187000 0.0036 -
3.0914 187500 0.0056 -
3.0997 188000 0.0057 -
3.1079 188500 0.0045 -
3.1161 189000 0.0051 -
3.1244 189500 0.0046 -
3.1326 190000 0.0041 0.7654
3.1409 190500 0.004 -
3.1491 191000 0.0045 -
3.1574 191500 0.0058 -
3.1656 192000 0.0038 -
3.1738 192500 0.004 -
3.1821 193000 0.0047 -
3.1903 193500 0.0055 -
3.1986 194000 0.0049 -
3.2068 194500 0.0028 -
3.2151 195000 0.0038 0.7661
3.2233 195500 0.0035 -
3.2316 196000 0.0045 -
3.2398 196500 0.004 -
3.2480 197000 0.0056 -
3.2563 197500 0.0032 -
3.2645 198000 0.0069 -
3.2728 198500 0.0046 -
3.2810 199000 0.0031 -
3.2893 199500 0.0028 -
3.2975 200000 0.0042 0.7648
3.3057 200500 0.0053 -
3.3140 201000 0.0057 -
3.3222 201500 0.0053 -
3.3305 202000 0.0034 -
3.3387 202500 0.0045 -
3.3470 203000 0.0061 -
3.3552 203500 0.0031 -
3.3635 204000 0.0046 -
3.3717 204500 0.0042 -
3.3799 205000 0.0035 0.7661
3.3882 205500 0.0042 -
3.3964 206000 0.0043 -
3.4047 206500 0.0035 -
3.4129 207000 0.0051 -
3.4212 207500 0.0041 -
3.4294 208000 0.0041 -
3.4376 208500 0.0039 -
3.4459 209000 0.0049 -
3.4541 209500 0.0038 -
3.4624 210000 0.0053 0.7662
3.4706 210500 0.0044 -
3.4789 211000 0.0039 -
3.4871 211500 0.0039 -
3.4954 212000 0.0042 -
3.5036 212500 0.0029 -
3.5118 213000 0.0045 -
3.5201 213500 0.0049 -
3.5283 214000 0.004 -
3.5366 214500 0.0059 -
3.5448 215000 0.0046 0.7666
3.5531 215500 0.0045 -
3.5613 216000 0.004 -
3.5695 216500 0.0041 -
3.5778 217000 0.0046 -
3.5860 217500 0.0033 -
3.5943 218000 0.0039 -
3.6025 218500 0.0033 -
3.6108 219000 0.0045 -
3.6190 219500 0.0046 -
3.6273 220000 0.0031 0.7677
3.6355 220500 0.0056 -
3.6437 221000 0.0059 -
3.6520 221500 0.0033 -
3.6602 222000 0.0036 -
3.6685 222500 0.0038 -
3.6767 223000 0.0043 -
3.6850 223500 0.0058 -
3.6932 224000 0.0046 -
3.7014 224500 0.0039 -
3.7097 225000 0.0052 0.7666
3.7179 225500 0.0039 -
3.7262 226000 0.0051 -
3.7344 226500 0.0051 -
3.7427 227000 0.0045 -
3.7509 227500 0.005 -
3.7592 228000 0.0032 -
3.7674 228500 0.0028 -
3.7756 229000 0.0022 -
3.7839 229500 0.0036 -
3.7921 230000 0.0031 0.7668
3.8004 230500 0.0045 -
3.8086 231000 0.0046 -
3.8169 231500 0.005 -
3.8251 232000 0.0046 -
3.8333 232500 0.0033 -
3.8416 233000 0.0031 -
3.8498 233500 0.0032 -
3.8581 234000 0.0041 -
3.8663 234500 0.0041 -
3.8746 235000 0.0044 0.7679
3.8828 235500 0.0024 -
3.8911 236000 0.0028 -
3.8993 236500 0.0029 -
3.9075 237000 0.0046 -
3.9158 237500 0.005 -
3.9240 238000 0.0046 -
3.9323 238500 0.0053 -
3.9405 239000 0.0028 -
3.9488 239500 0.0039 -
3.9570 240000 0.0033 0.7659
3.9652 240500 0.0037 -
3.9735 241000 0.0037 -
3.9817 241500 0.0037 -
3.9900 242000 0.0032 -
3.9982 242500 0.0056 -
4.0 242608 - 0.7666
4.0065 243000 0.0042 -
4.0147 243500 0.0036 -
4.0230 244000 0.0034 -
4.0312 244500 0.002 -
4.0394 245000 0.0035 0.7673
4.0477 245500 0.0036 -
4.0559 246000 0.0039 -
4.0642 246500 0.0029 -
4.0724 247000 0.0029 -
4.0807 247500 0.0028 -
4.0889 248000 0.0034 -
4.0971 248500 0.003 -
4.1054 249000 0.0024 -
4.1136 249500 0.0038 -
4.1219 250000 0.0032 0.7675
4.1301 250500 0.0023 -
4.1384 251000 0.0038 -
4.1466 251500 0.0045 -
4.1549 252000 0.0036 -
4.1631 252500 0.0021 -
4.1713 253000 0.0033 -
4.1796 253500 0.0032 -
4.1878 254000 0.0034 -
4.1961 254500 0.0028 -
4.2043 255000 0.0028 0.7666
4.2126 255500 0.002 -
4.2208 256000 0.0017 -
4.2290 256500 0.0024 -
4.2373 257000 0.0039 -
4.2455 257500 0.0037 -
4.2538 258000 0.0044 -
4.2620 258500 0.003 -
4.2703 259000 0.0028 -
4.2785 259500 0.0052 -
4.2868 260000 0.0034 0.7674
4.2950 260500 0.0025 -
4.3032 261000 0.0033 -
4.3115 261500 0.0028 -
4.3197 262000 0.0022 -
4.3280 262500 0.0026 -
4.3362 263000 0.0033 -
4.3445 263500 0.0032 -
4.3527 264000 0.003 -
4.3609 264500 0.0024 -
4.3692 265000 0.0029 0.7673
4.3774 265500 0.0026 -
4.3857 266000 0.0018 -
4.3939 266500 0.0035 -
4.4022 267000 0.0044 -
4.4104 267500 0.0019 -
4.4187 268000 0.003 -
4.4269 268500 0.0049 -
4.4351 269000 0.003 -
4.4434 269500 0.0035 -
4.4516 270000 0.0031 0.7688
4.4599 270500 0.0026 -
4.4681 271000 0.0036 -
4.4764 271500 0.0027 -
4.4846 272000 0.003 -
4.4928 272500 0.0037 -
4.5011 273000 0.0037 -
4.5093 273500 0.0023 -
4.5176 274000 0.0033 -
4.5258 274500 0.0021 -
4.5341 275000 0.0038 0.7685
4.5423 275500 0.0036 -
4.5506 276000 0.0029 -
4.5588 276500 0.0032 -
4.5670 277000 0.003 -
4.5753 277500 0.0031 -
4.5835 278000 0.0027 -
4.5918 278500 0.0023 -
4.6000 279000 0.0028 -
4.6083 279500 0.0025 -
4.6165 280000 0.0024 0.7685
4.6247 280500 0.0039 -
4.6330 281000 0.0023 -
4.6412 281500 0.0029 -
4.6495 282000 0.003 -
4.6577 282500 0.0033 -
4.6660 283000 0.0032 -
4.6742 283500 0.0037 -
4.6825 284000 0.0029 -
4.6907 284500 0.0044 -
4.6989 285000 0.0022 0.7689
4.7072 285500 0.003 -
4.7154 286000 0.0036 -
4.7237 286500 0.0031 -
4.7319 287000 0.0043 -
4.7402 287500 0.0035 -
4.7484 288000 0.0041 -
4.7566 288500 0.0028 -
4.7649 289000 0.0032 -
4.7731 289500 0.0025 -
4.7814 290000 0.0028 0.7695
4.7896 290500 0.0032 -
4.7979 291000 0.0032 -
4.8061 291500 0.0022 -
4.8144 292000 0.0027 -
4.8226 292500 0.0031 -
4.8308 293000 0.0034 -
4.8391 293500 0.0025 -
4.8473 294000 0.0025 -
4.8556 294500 0.0033 -
4.8638 295000 0.0022 0.7699
4.8721 295500 0.0034 -
4.8803 296000 0.0018 -
4.8885 296500 0.0026 -
4.8968 297000 0.0039 -
4.9050 297500 0.0034 -
4.9133 298000 0.0023 -
4.9215 298500 0.0023 -
4.9298 299000 0.0046 -
4.9380 299500 0.0026 -
4.9463 300000 0.0035 0.7696
4.9545 300500 0.0028 -
4.9627 301000 0.003 -
4.9710 301500 0.0031 -
4.9792 302000 0.0037 -
4.9875 302500 0.0029 -
4.9957 303000 0.0039 -
5.0 303260 - 0.7695

Framework Versions

  • Python: 3.11.11
  • Sentence Transformers: 3.4.1
  • Transformers: 4.50.3
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.5.2
  • Datasets: 3.5.0
  • Tokenizers: 0.21.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
5
Safetensors
Model size
152M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for Shuu12121/CodeSearch-ModernBERT-Owl-ALT

Finetuned
(3)
this model

Evaluation results