SentenceTransformer based on Shuu12121/CodeModernBERT-Owl
This is a sentence-transformers model finetuned from Shuu12121/CodeModernBERT-Owl. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: Shuu12121/CodeModernBERT-Owl
- Maximum Sequence Length: 2048 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 2048, 'do_lower_case': False}) with Transformer model: ModernBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'Write combining tables to filesystem as python code.',
'def _do_write(fname, variable, version, date, table):\n \n # pylint: disable=R0914\n # Too many local variables (19/15) (col 4)\n print("writing {} ..".format(fname))\n import unicodedata\n import datetime\n import string\n utc_now = datetime.datetime.utcnow()\n indent = 4\n with open(fname, \'w\') as fout:\n fout.write(\n \'\\n\'\n "# Generated: {iso_utc}\\n"\n "# Source: {version}\\n"\n "# Date: {date}\\n"\n "{variable} = (".format(iso_utc=utc_now.isoformat(),\n version=version,\n date=date,\n variable=variable,\n variable_proper=variable.title()))\n for start, end in table:\n ucs_start, ucs_end = unichr(start), unichr(end)\n hex_start, hex_end = (\'0x{0:04x}\'.format(start),\n \'0x{0:04x}\'.format(end))\n try:\n name_start = string.capwords(unicodedata.name(ucs_start))\n except ValueError:\n name_start = u\'\'\n try:\n name_end = string.capwords(unicodedata.name(ucs_end))\n except ValueError:\n name_end = u\'\'\n fout.write(\'\\n\' + (\' \' * indent))\n fout.write(\'({0}, {1},),\'.format(hex_start, hex_end))\n fout.write(\' # {0:24s}..{1}\'.format(\n name_start[:24].rstrip() or \'(nil)\',\n name_end[:24].rstrip()))\n fout.write(\'\\n)\\n\')\n print("complete.")',
'def RGB_to_HSV(cobj, *args, **kwargs):\n \n var_R = cobj.rgb_r\n var_G = cobj.rgb_g\n var_B = cobj.rgb_b\n\n var_max = max(var_R, var_G, var_B)\n var_min = min(var_R, var_G, var_B)\n\n var_H = __RGB_to_Hue(var_R, var_G, var_B, var_min, var_max)\n\n if var_max == 0:\n var_S = 0\n else:\n var_S = 1.0 - (var_min / var_max)\n\n var_V = var_max\n\n return HSVColor(\n var_H, var_S, var_V)',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
code-docstring-retrieval
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.5568 |
cosine_accuracy@3 | 0.8609 |
cosine_accuracy@5 | 0.9019 |
cosine_accuracy@10 | 0.9297 |
cosine_precision@1 | 0.5568 |
cosine_precision@3 | 0.287 |
cosine_precision@5 | 0.1804 |
cosine_precision@10 | 0.093 |
cosine_recall@1 | 0.5568 |
cosine_recall@3 | 0.8609 |
cosine_recall@5 | 0.9019 |
cosine_recall@10 | 0.9297 |
cosine_ndcg@10 | 0.7695 |
cosine_mrr@10 | 0.7155 |
cosine_map@100 | 0.7173 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 1,455,632 training samples
- Columns:
sentence_0
,sentence_1
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 label type string string float details - min: 5 tokens
- mean: 96.39 tokens
- max: 2048 tokens
- min: 27 tokens
- mean: 159.11 tokens
- max: 889 tokens
- min: 1.0
- mean: 1.0
- max: 1.0
- Samples:
sentence_0 sentence_1 label Set the text for this element.
Arguments:
text (str): The text
cls (str): The class of the text, defaults tocurrent
(leave this unless you know what you are doing). There may be only one text content element of each class associated with the element.def settext(self, text, cls='current'):
self.replace(TextContent, value=text, cls=cls)1.0
Associate a document with this element.
Arguments:
doc (:class:Document
): A document
Each element must be associated with a FoLiA document.def setdocument(self, doc):
assert isinstance(doc, Document)
if not self.doc:
self.doc = doc
if self.id:
if self.id in doc:
raise DuplicateIDError(self.id)
else:
self.doc.index[id] = self
for e in self: #recursive for all children
if isinstance(e,AbstractElement): e.setdocument(doc)1.0
Tests whether a new element of this class can be added to the parent.
This method is mostly for internal use.
This will use theOCCURRENCES
property, but may be overidden by subclasses for more customised behaviour.
Parameters:
parent (:class:AbstractElement
): The element that is being added to
set (str or None): The set
raiseexceptions (bool): Raise an exception if the element can't be added?
Returns:
bool
Raises:
ValueErrordef addable(Class, parent, set=None, raiseexceptions=True):
if not parent.class.accepts(Class, raiseexceptions, parent):
return False
if Class.OCCURRENCES > 0:
#check if the parent doesn't have too many already
count = parent.count(Class,None,True,[True, AbstractStructureElement]) #never descend into embedded structure annotatioton
if count >= Class.OCCURRENCES:
if raiseexceptions:
if parent.id:
extra = ' (id=' + parent.id + ')'
else:
extra = ''
raise DuplicateAnnotationError("Unable to add another object of type " + Class.name + " to " + parent.class.name + " " + extra + ". There are already " + str(count) + " instances of this class, which is the maximum.")
else:
return False
if Class.OCCURRENCES_PER_SET > 0 and set and Class.R...1.0
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 24per_device_eval_batch_size
: 24num_train_epochs
: 5fp16
: Truemulti_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 24per_device_eval_batch_size
: 24per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 5max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size
: 0fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Click to expand
Epoch | Step | Training Loss | code-docstring-retrieval_cosine_ndcg@10 |
---|---|---|---|
0.0082 | 500 | 0.974 | - |
0.0165 | 1000 | 0.1263 | - |
0.0247 | 1500 | 0.0996 | - |
0.0330 | 2000 | 0.0846 | - |
0.0412 | 2500 | 0.0897 | - |
0.0495 | 3000 | 0.0788 | - |
0.0577 | 3500 | 0.0738 | - |
0.0660 | 4000 | 0.0738 | - |
0.0742 | 4500 | 0.0709 | - |
0.0824 | 5000 | 0.0677 | 0.7449 |
0.0907 | 5500 | 0.0679 | - |
0.0989 | 6000 | 0.0677 | - |
0.1072 | 6500 | 0.0667 | - |
0.1154 | 7000 | 0.0625 | - |
0.1237 | 7500 | 0.0579 | - |
0.1319 | 8000 | 0.0635 | - |
0.1401 | 8500 | 0.0612 | - |
0.1484 | 9000 | 0.0561 | - |
0.1566 | 9500 | 0.0592 | - |
0.1649 | 10000 | 0.0608 | 0.7534 |
0.1731 | 10500 | 0.0534 | - |
0.1814 | 11000 | 0.0599 | - |
0.1896 | 11500 | 0.0554 | - |
0.1979 | 12000 | 0.0596 | - |
0.2061 | 12500 | 0.0553 | - |
0.2143 | 13000 | 0.0483 | - |
0.2226 | 13500 | 0.0497 | - |
0.2308 | 14000 | 0.0523 | - |
0.2391 | 14500 | 0.0541 | - |
0.2473 | 15000 | 0.0499 | 0.7543 |
0.2556 | 15500 | 0.0527 | - |
0.2638 | 16000 | 0.0464 | - |
0.2720 | 16500 | 0.0467 | - |
0.2803 | 17000 | 0.0523 | - |
0.2885 | 17500 | 0.0502 | - |
0.2968 | 18000 | 0.0511 | - |
0.3050 | 18500 | 0.042 | - |
0.3133 | 19000 | 0.0515 | - |
0.3215 | 19500 | 0.0488 | - |
0.3298 | 20000 | 0.0493 | 0.7556 |
0.3380 | 20500 | 0.0432 | - |
0.3462 | 21000 | 0.0485 | - |
0.3545 | 21500 | 0.0406 | - |
0.3627 | 22000 | 0.0436 | - |
0.3710 | 22500 | 0.0439 | - |
0.3792 | 23000 | 0.0464 | - |
0.3875 | 23500 | 0.0392 | - |
0.3957 | 24000 | 0.0421 | - |
0.4039 | 24500 | 0.0427 | - |
0.4122 | 25000 | 0.0406 | 0.7559 |
0.4204 | 25500 | 0.049 | - |
0.4287 | 26000 | 0.0407 | - |
0.4369 | 26500 | 0.044 | - |
0.4452 | 27000 | 0.0424 | - |
0.4534 | 27500 | 0.0399 | - |
0.4617 | 28000 | 0.0417 | - |
0.4699 | 28500 | 0.0399 | - |
0.4781 | 29000 | 0.0418 | - |
0.4864 | 29500 | 0.043 | - |
0.4946 | 30000 | 0.0425 | 0.7556 |
0.5029 | 30500 | 0.0428 | - |
0.5111 | 31000 | 0.0452 | - |
0.5194 | 31500 | 0.0432 | - |
0.5276 | 32000 | 0.0387 | - |
0.5358 | 32500 | 0.0389 | - |
0.5441 | 33000 | 0.0436 | - |
0.5523 | 33500 | 0.04 | - |
0.5606 | 34000 | 0.0407 | - |
0.5688 | 34500 | 0.0437 | - |
0.5771 | 35000 | 0.0404 | 0.7604 |
0.5853 | 35500 | 0.0361 | - |
0.5936 | 36000 | 0.0382 | - |
0.6018 | 36500 | 0.0407 | - |
0.6100 | 37000 | 0.0335 | - |
0.6183 | 37500 | 0.0431 | - |
0.6265 | 38000 | 0.0422 | - |
0.6348 | 38500 | 0.0414 | - |
0.6430 | 39000 | 0.0364 | - |
0.6513 | 39500 | 0.0373 | - |
0.6595 | 40000 | 0.0392 | 0.7590 |
0.6677 | 40500 | 0.0373 | - |
0.6760 | 41000 | 0.0389 | - |
0.6842 | 41500 | 0.0367 | - |
0.6925 | 42000 | 0.0329 | - |
0.7007 | 42500 | 0.0367 | - |
0.7090 | 43000 | 0.0386 | - |
0.7172 | 43500 | 0.0342 | - |
0.7255 | 44000 | 0.0332 | - |
0.7337 | 44500 | 0.0352 | - |
0.7419 | 45000 | 0.0348 | 0.7572 |
0.7502 | 45500 | 0.038 | - |
0.7584 | 46000 | 0.03 | - |
0.7667 | 46500 | 0.0357 | - |
0.7749 | 47000 | 0.0382 | - |
0.7832 | 47500 | 0.0386 | - |
0.7914 | 48000 | 0.0345 | - |
0.7996 | 48500 | 0.0349 | - |
0.8079 | 49000 | 0.0338 | - |
0.8161 | 49500 | 0.0346 | - |
0.8244 | 50000 | 0.0401 | 0.7600 |
0.8326 | 50500 | 0.0322 | - |
0.8409 | 51000 | 0.0372 | - |
0.8491 | 51500 | 0.0315 | - |
0.8574 | 52000 | 0.0353 | - |
0.8656 | 52500 | 0.0324 | - |
0.8738 | 53000 | 0.0354 | - |
0.8821 | 53500 | 0.0359 | - |
0.8903 | 54000 | 0.0349 | - |
0.8986 | 54500 | 0.0361 | - |
0.9068 | 55000 | 0.0394 | 0.7587 |
0.9151 | 55500 | 0.0367 | - |
0.9233 | 56000 | 0.0274 | - |
0.9315 | 56500 | 0.0333 | - |
0.9398 | 57000 | 0.0337 | - |
0.9480 | 57500 | 0.0335 | - |
0.9563 | 58000 | 0.0336 | - |
0.9645 | 58500 | 0.0323 | - |
0.9728 | 59000 | 0.0326 | - |
0.9810 | 59500 | 0.034 | - |
0.9893 | 60000 | 0.0272 | 0.7566 |
0.9975 | 60500 | 0.0283 | - |
1.0 | 60652 | - | 0.7574 |
1.0057 | 61000 | 0.0228 | - |
1.0140 | 61500 | 0.0125 | - |
1.0222 | 62000 | 0.0178 | - |
1.0305 | 62500 | 0.0129 | - |
1.0387 | 63000 | 0.0155 | - |
1.0470 | 63500 | 0.0154 | - |
1.0552 | 64000 | 0.0121 | - |
1.0634 | 64500 | 0.0147 | - |
1.0717 | 65000 | 0.0177 | 0.7582 |
1.0799 | 65500 | 0.0156 | - |
1.0882 | 66000 | 0.0159 | - |
1.0964 | 66500 | 0.0137 | - |
1.1047 | 67000 | 0.014 | - |
1.1129 | 67500 | 0.0152 | - |
1.1212 | 68000 | 0.0137 | - |
1.1294 | 68500 | 0.0133 | - |
1.1376 | 69000 | 0.0174 | - |
1.1459 | 69500 | 0.0165 | - |
1.1541 | 70000 | 0.0147 | 0.7600 |
1.1624 | 70500 | 0.0165 | - |
1.1706 | 71000 | 0.012 | - |
1.1789 | 71500 | 0.0138 | - |
1.1871 | 72000 | 0.0121 | - |
1.1953 | 72500 | 0.0163 | - |
1.2036 | 73000 | 0.0139 | - |
1.2118 | 73500 | 0.0136 | - |
1.2201 | 74000 | 0.0127 | - |
1.2283 | 74500 | 0.0164 | - |
1.2366 | 75000 | 0.0166 | 0.7610 |
1.2448 | 75500 | 0.0163 | - |
1.2531 | 76000 | 0.0146 | - |
1.2613 | 76500 | 0.0118 | - |
1.2695 | 77000 | 0.0139 | - |
1.2778 | 77500 | 0.0205 | - |
1.2860 | 78000 | 0.0166 | - |
1.2943 | 78500 | 0.0125 | - |
1.3025 | 79000 | 0.0172 | - |
1.3108 | 79500 | 0.0132 | - |
1.3190 | 80000 | 0.0149 | 0.7604 |
1.3272 | 80500 | 0.0128 | - |
1.3355 | 81000 | 0.0182 | - |
1.3437 | 81500 | 0.014 | - |
1.3520 | 82000 | 0.0172 | - |
1.3602 | 82500 | 0.0148 | - |
1.3685 | 83000 | 0.014 | - |
1.3767 | 83500 | 0.0154 | - |
1.3850 | 84000 | 0.013 | - |
1.3932 | 84500 | 0.0135 | - |
1.4014 | 85000 | 0.0151 | 0.7625 |
1.4097 | 85500 | 0.016 | - |
1.4179 | 86000 | 0.0127 | - |
1.4262 | 86500 | 0.0147 | - |
1.4344 | 87000 | 0.0157 | - |
1.4427 | 87500 | 0.0159 | - |
1.4509 | 88000 | 0.0146 | - |
1.4591 | 88500 | 0.0134 | - |
1.4674 | 89000 | 0.0177 | - |
1.4756 | 89500 | 0.0165 | - |
1.4839 | 90000 | 0.0167 | 0.7619 |
1.4921 | 90500 | 0.0189 | - |
1.5004 | 91000 | 0.0157 | - |
1.5086 | 91500 | 0.0147 | - |
1.5169 | 92000 | 0.0142 | - |
1.5251 | 92500 | 0.0161 | - |
1.5333 | 93000 | 0.0139 | - |
1.5416 | 93500 | 0.0142 | - |
1.5498 | 94000 | 0.0151 | - |
1.5581 | 94500 | 0.0156 | - |
1.5663 | 95000 | 0.0137 | 0.7595 |
1.5746 | 95500 | 0.0114 | - |
1.5828 | 96000 | 0.0126 | - |
1.5910 | 96500 | 0.0148 | - |
1.5993 | 97000 | 0.0122 | - |
1.6075 | 97500 | 0.0171 | - |
1.6158 | 98000 | 0.0147 | - |
1.6240 | 98500 | 0.0167 | - |
1.6323 | 99000 | 0.0175 | - |
1.6405 | 99500 | 0.0137 | - |
1.6488 | 100000 | 0.014 | 0.7591 |
1.6570 | 100500 | 0.0132 | - |
1.6652 | 101000 | 0.0167 | - |
1.6735 | 101500 | 0.0145 | - |
1.6817 | 102000 | 0.013 | - |
1.6900 | 102500 | 0.0161 | - |
1.6982 | 103000 | 0.0136 | - |
1.7065 | 103500 | 0.0131 | - |
1.7147 | 104000 | 0.016 | - |
1.7229 | 104500 | 0.0148 | - |
1.7312 | 105000 | 0.0134 | 0.7617 |
1.7394 | 105500 | 0.0141 | - |
1.7477 | 106000 | 0.0154 | - |
1.7559 | 106500 | 0.0154 | - |
1.7642 | 107000 | 0.0147 | - |
1.7724 | 107500 | 0.0134 | - |
1.7807 | 108000 | 0.0129 | - |
1.7889 | 108500 | 0.0135 | - |
1.7971 | 109000 | 0.0157 | - |
1.8054 | 109500 | 0.0142 | - |
1.8136 | 110000 | 0.0159 | 0.7614 |
1.8219 | 110500 | 0.0151 | - |
1.8301 | 111000 | 0.0114 | - |
1.8384 | 111500 | 0.0126 | - |
1.8466 | 112000 | 0.0153 | - |
1.8548 | 112500 | 0.0159 | - |
1.8631 | 113000 | 0.0131 | - |
1.8713 | 113500 | 0.0168 | - |
1.8796 | 114000 | 0.0148 | - |
1.8878 | 114500 | 0.0144 | - |
1.8961 | 115000 | 0.0127 | 0.7605 |
1.9043 | 115500 | 0.0179 | - |
1.9126 | 116000 | 0.0131 | - |
1.9208 | 116500 | 0.0154 | - |
1.9290 | 117000 | 0.0163 | - |
1.9373 | 117500 | 0.0114 | - |
1.9455 | 118000 | 0.0141 | - |
1.9538 | 118500 | 0.018 | - |
1.9620 | 119000 | 0.0147 | - |
1.9703 | 119500 | 0.0119 | - |
1.9785 | 120000 | 0.0133 | 0.7617 |
1.9867 | 120500 | 0.015 | - |
1.9950 | 121000 | 0.0144 | - |
2.0 | 121304 | - | 0.7652 |
2.0032 | 121500 | 0.0116 | - |
2.0115 | 122000 | 0.0072 | - |
2.0197 | 122500 | 0.0069 | - |
2.0280 | 123000 | 0.0071 | - |
2.0362 | 123500 | 0.0044 | - |
2.0445 | 124000 | 0.0069 | - |
2.0527 | 124500 | 0.0059 | - |
2.0609 | 125000 | 0.0061 | 0.7625 |
2.0692 | 125500 | 0.0067 | - |
2.0774 | 126000 | 0.0065 | - |
2.0857 | 126500 | 0.007 | - |
2.0939 | 127000 | 0.0056 | - |
2.1022 | 127500 | 0.006 | - |
2.1104 | 128000 | 0.0076 | - |
2.1186 | 128500 | 0.0069 | - |
2.1269 | 129000 | 0.0064 | - |
2.1351 | 129500 | 0.0082 | - |
2.1434 | 130000 | 0.0053 | 0.7613 |
2.1516 | 130500 | 0.0045 | - |
2.1599 | 131000 | 0.0059 | - |
2.1681 | 131500 | 0.0071 | - |
2.1764 | 132000 | 0.0076 | - |
2.1846 | 132500 | 0.0067 | - |
2.1928 | 133000 | 0.0061 | - |
2.2011 | 133500 | 0.0073 | - |
2.2093 | 134000 | 0.008 | - |
2.2176 | 134500 | 0.0079 | - |
2.2258 | 135000 | 0.0076 | 0.7662 |
2.2341 | 135500 | 0.0085 | - |
2.2423 | 136000 | 0.0048 | - |
2.2505 | 136500 | 0.0076 | - |
2.2588 | 137000 | 0.0069 | - |
2.2670 | 137500 | 0.007 | - |
2.2753 | 138000 | 0.0064 | - |
2.2835 | 138500 | 0.0072 | - |
2.2918 | 139000 | 0.0054 | - |
2.3000 | 139500 | 0.0068 | - |
2.3083 | 140000 | 0.0066 | 0.7638 |
2.3165 | 140500 | 0.0072 | - |
2.3247 | 141000 | 0.0078 | - |
2.3330 | 141500 | 0.0077 | - |
2.3412 | 142000 | 0.0066 | - |
2.3495 | 142500 | 0.0084 | - |
2.3577 | 143000 | 0.0063 | - |
2.3660 | 143500 | 0.0064 | - |
2.3742 | 144000 | 0.0058 | - |
2.3824 | 144500 | 0.0076 | - |
2.3907 | 145000 | 0.0072 | 0.7628 |
2.3989 | 145500 | 0.0076 | - |
2.4072 | 146000 | 0.0068 | - |
2.4154 | 146500 | 0.0051 | - |
2.4237 | 147000 | 0.0056 | - |
2.4319 | 147500 | 0.0076 | - |
2.4402 | 148000 | 0.0065 | - |
2.4484 | 148500 | 0.0088 | - |
2.4566 | 149000 | 0.0053 | - |
2.4649 | 149500 | 0.0059 | - |
2.4731 | 150000 | 0.005 | 0.7642 |
2.4814 | 150500 | 0.0072 | - |
2.4896 | 151000 | 0.0078 | - |
2.4979 | 151500 | 0.0058 | - |
2.5061 | 152000 | 0.0072 | - |
2.5143 | 152500 | 0.006 | - |
2.5226 | 153000 | 0.0075 | - |
2.5308 | 153500 | 0.007 | - |
2.5391 | 154000 | 0.0076 | - |
2.5473 | 154500 | 0.0059 | - |
2.5556 | 155000 | 0.0066 | 0.7633 |
2.5638 | 155500 | 0.0047 | - |
2.5721 | 156000 | 0.0061 | - |
2.5803 | 156500 | 0.0063 | - |
2.5885 | 157000 | 0.0071 | - |
2.5968 | 157500 | 0.005 | - |
2.6050 | 158000 | 0.0082 | - |
2.6133 | 158500 | 0.0061 | - |
2.6215 | 159000 | 0.006 | - |
2.6298 | 159500 | 0.0073 | - |
2.6380 | 160000 | 0.0063 | 0.7645 |
2.6462 | 160500 | 0.0069 | - |
2.6545 | 161000 | 0.0056 | - |
2.6627 | 161500 | 0.0077 | - |
2.6710 | 162000 | 0.0082 | - |
2.6792 | 162500 | 0.0072 | - |
2.6875 | 163000 | 0.0073 | - |
2.6957 | 163500 | 0.0088 | - |
2.7040 | 164000 | 0.0048 | - |
2.7122 | 164500 | 0.0064 | - |
2.7204 | 165000 | 0.0067 | 0.7647 |
2.7287 | 165500 | 0.0065 | - |
2.7369 | 166000 | 0.0083 | - |
2.7452 | 166500 | 0.0055 | - |
2.7534 | 167000 | 0.0041 | - |
2.7617 | 167500 | 0.0063 | - |
2.7699 | 168000 | 0.0067 | - |
2.7781 | 168500 | 0.0059 | - |
2.7864 | 169000 | 0.01 | - |
2.7946 | 169500 | 0.005 | - |
2.8029 | 170000 | 0.0061 | 0.7636 |
2.8111 | 170500 | 0.0069 | - |
2.8194 | 171000 | 0.0046 | - |
2.8276 | 171500 | 0.0071 | - |
2.8359 | 172000 | 0.0078 | - |
2.8441 | 172500 | 0.0078 | - |
2.8523 | 173000 | 0.0083 | - |
2.8606 | 173500 | 0.0069 | - |
2.8688 | 174000 | 0.0067 | - |
2.8771 | 174500 | 0.0065 | - |
2.8853 | 175000 | 0.0064 | 0.7646 |
2.8936 | 175500 | 0.0064 | - |
2.9018 | 176000 | 0.0067 | - |
2.9100 | 176500 | 0.0054 | - |
2.9183 | 177000 | 0.0061 | - |
2.9265 | 177500 | 0.0074 | - |
2.9348 | 178000 | 0.0056 | - |
2.9430 | 178500 | 0.0072 | - |
2.9513 | 179000 | 0.0064 | - |
2.9595 | 179500 | 0.0077 | - |
2.9678 | 180000 | 0.0056 | 0.7651 |
2.9760 | 180500 | 0.0068 | - |
2.9842 | 181000 | 0.0063 | - |
2.9925 | 181500 | 0.007 | - |
3.0 | 181956 | - | 0.7631 |
3.0007 | 182000 | 0.0073 | - |
3.0090 | 182500 | 0.0031 | - |
3.0172 | 183000 | 0.0044 | - |
3.0255 | 183500 | 0.0043 | - |
3.0337 | 184000 | 0.0056 | - |
3.0419 | 184500 | 0.0054 | - |
3.0502 | 185000 | 0.0051 | 0.7631 |
3.0584 | 185500 | 0.0044 | - |
3.0667 | 186000 | 0.0047 | - |
3.0749 | 186500 | 0.0041 | - |
3.0832 | 187000 | 0.0036 | - |
3.0914 | 187500 | 0.0056 | - |
3.0997 | 188000 | 0.0057 | - |
3.1079 | 188500 | 0.0045 | - |
3.1161 | 189000 | 0.0051 | - |
3.1244 | 189500 | 0.0046 | - |
3.1326 | 190000 | 0.0041 | 0.7654 |
3.1409 | 190500 | 0.004 | - |
3.1491 | 191000 | 0.0045 | - |
3.1574 | 191500 | 0.0058 | - |
3.1656 | 192000 | 0.0038 | - |
3.1738 | 192500 | 0.004 | - |
3.1821 | 193000 | 0.0047 | - |
3.1903 | 193500 | 0.0055 | - |
3.1986 | 194000 | 0.0049 | - |
3.2068 | 194500 | 0.0028 | - |
3.2151 | 195000 | 0.0038 | 0.7661 |
3.2233 | 195500 | 0.0035 | - |
3.2316 | 196000 | 0.0045 | - |
3.2398 | 196500 | 0.004 | - |
3.2480 | 197000 | 0.0056 | - |
3.2563 | 197500 | 0.0032 | - |
3.2645 | 198000 | 0.0069 | - |
3.2728 | 198500 | 0.0046 | - |
3.2810 | 199000 | 0.0031 | - |
3.2893 | 199500 | 0.0028 | - |
3.2975 | 200000 | 0.0042 | 0.7648 |
3.3057 | 200500 | 0.0053 | - |
3.3140 | 201000 | 0.0057 | - |
3.3222 | 201500 | 0.0053 | - |
3.3305 | 202000 | 0.0034 | - |
3.3387 | 202500 | 0.0045 | - |
3.3470 | 203000 | 0.0061 | - |
3.3552 | 203500 | 0.0031 | - |
3.3635 | 204000 | 0.0046 | - |
3.3717 | 204500 | 0.0042 | - |
3.3799 | 205000 | 0.0035 | 0.7661 |
3.3882 | 205500 | 0.0042 | - |
3.3964 | 206000 | 0.0043 | - |
3.4047 | 206500 | 0.0035 | - |
3.4129 | 207000 | 0.0051 | - |
3.4212 | 207500 | 0.0041 | - |
3.4294 | 208000 | 0.0041 | - |
3.4376 | 208500 | 0.0039 | - |
3.4459 | 209000 | 0.0049 | - |
3.4541 | 209500 | 0.0038 | - |
3.4624 | 210000 | 0.0053 | 0.7662 |
3.4706 | 210500 | 0.0044 | - |
3.4789 | 211000 | 0.0039 | - |
3.4871 | 211500 | 0.0039 | - |
3.4954 | 212000 | 0.0042 | - |
3.5036 | 212500 | 0.0029 | - |
3.5118 | 213000 | 0.0045 | - |
3.5201 | 213500 | 0.0049 | - |
3.5283 | 214000 | 0.004 | - |
3.5366 | 214500 | 0.0059 | - |
3.5448 | 215000 | 0.0046 | 0.7666 |
3.5531 | 215500 | 0.0045 | - |
3.5613 | 216000 | 0.004 | - |
3.5695 | 216500 | 0.0041 | - |
3.5778 | 217000 | 0.0046 | - |
3.5860 | 217500 | 0.0033 | - |
3.5943 | 218000 | 0.0039 | - |
3.6025 | 218500 | 0.0033 | - |
3.6108 | 219000 | 0.0045 | - |
3.6190 | 219500 | 0.0046 | - |
3.6273 | 220000 | 0.0031 | 0.7677 |
3.6355 | 220500 | 0.0056 | - |
3.6437 | 221000 | 0.0059 | - |
3.6520 | 221500 | 0.0033 | - |
3.6602 | 222000 | 0.0036 | - |
3.6685 | 222500 | 0.0038 | - |
3.6767 | 223000 | 0.0043 | - |
3.6850 | 223500 | 0.0058 | - |
3.6932 | 224000 | 0.0046 | - |
3.7014 | 224500 | 0.0039 | - |
3.7097 | 225000 | 0.0052 | 0.7666 |
3.7179 | 225500 | 0.0039 | - |
3.7262 | 226000 | 0.0051 | - |
3.7344 | 226500 | 0.0051 | - |
3.7427 | 227000 | 0.0045 | - |
3.7509 | 227500 | 0.005 | - |
3.7592 | 228000 | 0.0032 | - |
3.7674 | 228500 | 0.0028 | - |
3.7756 | 229000 | 0.0022 | - |
3.7839 | 229500 | 0.0036 | - |
3.7921 | 230000 | 0.0031 | 0.7668 |
3.8004 | 230500 | 0.0045 | - |
3.8086 | 231000 | 0.0046 | - |
3.8169 | 231500 | 0.005 | - |
3.8251 | 232000 | 0.0046 | - |
3.8333 | 232500 | 0.0033 | - |
3.8416 | 233000 | 0.0031 | - |
3.8498 | 233500 | 0.0032 | - |
3.8581 | 234000 | 0.0041 | - |
3.8663 | 234500 | 0.0041 | - |
3.8746 | 235000 | 0.0044 | 0.7679 |
3.8828 | 235500 | 0.0024 | - |
3.8911 | 236000 | 0.0028 | - |
3.8993 | 236500 | 0.0029 | - |
3.9075 | 237000 | 0.0046 | - |
3.9158 | 237500 | 0.005 | - |
3.9240 | 238000 | 0.0046 | - |
3.9323 | 238500 | 0.0053 | - |
3.9405 | 239000 | 0.0028 | - |
3.9488 | 239500 | 0.0039 | - |
3.9570 | 240000 | 0.0033 | 0.7659 |
3.9652 | 240500 | 0.0037 | - |
3.9735 | 241000 | 0.0037 | - |
3.9817 | 241500 | 0.0037 | - |
3.9900 | 242000 | 0.0032 | - |
3.9982 | 242500 | 0.0056 | - |
4.0 | 242608 | - | 0.7666 |
4.0065 | 243000 | 0.0042 | - |
4.0147 | 243500 | 0.0036 | - |
4.0230 | 244000 | 0.0034 | - |
4.0312 | 244500 | 0.002 | - |
4.0394 | 245000 | 0.0035 | 0.7673 |
4.0477 | 245500 | 0.0036 | - |
4.0559 | 246000 | 0.0039 | - |
4.0642 | 246500 | 0.0029 | - |
4.0724 | 247000 | 0.0029 | - |
4.0807 | 247500 | 0.0028 | - |
4.0889 | 248000 | 0.0034 | - |
4.0971 | 248500 | 0.003 | - |
4.1054 | 249000 | 0.0024 | - |
4.1136 | 249500 | 0.0038 | - |
4.1219 | 250000 | 0.0032 | 0.7675 |
4.1301 | 250500 | 0.0023 | - |
4.1384 | 251000 | 0.0038 | - |
4.1466 | 251500 | 0.0045 | - |
4.1549 | 252000 | 0.0036 | - |
4.1631 | 252500 | 0.0021 | - |
4.1713 | 253000 | 0.0033 | - |
4.1796 | 253500 | 0.0032 | - |
4.1878 | 254000 | 0.0034 | - |
4.1961 | 254500 | 0.0028 | - |
4.2043 | 255000 | 0.0028 | 0.7666 |
4.2126 | 255500 | 0.002 | - |
4.2208 | 256000 | 0.0017 | - |
4.2290 | 256500 | 0.0024 | - |
4.2373 | 257000 | 0.0039 | - |
4.2455 | 257500 | 0.0037 | - |
4.2538 | 258000 | 0.0044 | - |
4.2620 | 258500 | 0.003 | - |
4.2703 | 259000 | 0.0028 | - |
4.2785 | 259500 | 0.0052 | - |
4.2868 | 260000 | 0.0034 | 0.7674 |
4.2950 | 260500 | 0.0025 | - |
4.3032 | 261000 | 0.0033 | - |
4.3115 | 261500 | 0.0028 | - |
4.3197 | 262000 | 0.0022 | - |
4.3280 | 262500 | 0.0026 | - |
4.3362 | 263000 | 0.0033 | - |
4.3445 | 263500 | 0.0032 | - |
4.3527 | 264000 | 0.003 | - |
4.3609 | 264500 | 0.0024 | - |
4.3692 | 265000 | 0.0029 | 0.7673 |
4.3774 | 265500 | 0.0026 | - |
4.3857 | 266000 | 0.0018 | - |
4.3939 | 266500 | 0.0035 | - |
4.4022 | 267000 | 0.0044 | - |
4.4104 | 267500 | 0.0019 | - |
4.4187 | 268000 | 0.003 | - |
4.4269 | 268500 | 0.0049 | - |
4.4351 | 269000 | 0.003 | - |
4.4434 | 269500 | 0.0035 | - |
4.4516 | 270000 | 0.0031 | 0.7688 |
4.4599 | 270500 | 0.0026 | - |
4.4681 | 271000 | 0.0036 | - |
4.4764 | 271500 | 0.0027 | - |
4.4846 | 272000 | 0.003 | - |
4.4928 | 272500 | 0.0037 | - |
4.5011 | 273000 | 0.0037 | - |
4.5093 | 273500 | 0.0023 | - |
4.5176 | 274000 | 0.0033 | - |
4.5258 | 274500 | 0.0021 | - |
4.5341 | 275000 | 0.0038 | 0.7685 |
4.5423 | 275500 | 0.0036 | - |
4.5506 | 276000 | 0.0029 | - |
4.5588 | 276500 | 0.0032 | - |
4.5670 | 277000 | 0.003 | - |
4.5753 | 277500 | 0.0031 | - |
4.5835 | 278000 | 0.0027 | - |
4.5918 | 278500 | 0.0023 | - |
4.6000 | 279000 | 0.0028 | - |
4.6083 | 279500 | 0.0025 | - |
4.6165 | 280000 | 0.0024 | 0.7685 |
4.6247 | 280500 | 0.0039 | - |
4.6330 | 281000 | 0.0023 | - |
4.6412 | 281500 | 0.0029 | - |
4.6495 | 282000 | 0.003 | - |
4.6577 | 282500 | 0.0033 | - |
4.6660 | 283000 | 0.0032 | - |
4.6742 | 283500 | 0.0037 | - |
4.6825 | 284000 | 0.0029 | - |
4.6907 | 284500 | 0.0044 | - |
4.6989 | 285000 | 0.0022 | 0.7689 |
4.7072 | 285500 | 0.003 | - |
4.7154 | 286000 | 0.0036 | - |
4.7237 | 286500 | 0.0031 | - |
4.7319 | 287000 | 0.0043 | - |
4.7402 | 287500 | 0.0035 | - |
4.7484 | 288000 | 0.0041 | - |
4.7566 | 288500 | 0.0028 | - |
4.7649 | 289000 | 0.0032 | - |
4.7731 | 289500 | 0.0025 | - |
4.7814 | 290000 | 0.0028 | 0.7695 |
4.7896 | 290500 | 0.0032 | - |
4.7979 | 291000 | 0.0032 | - |
4.8061 | 291500 | 0.0022 | - |
4.8144 | 292000 | 0.0027 | - |
4.8226 | 292500 | 0.0031 | - |
4.8308 | 293000 | 0.0034 | - |
4.8391 | 293500 | 0.0025 | - |
4.8473 | 294000 | 0.0025 | - |
4.8556 | 294500 | 0.0033 | - |
4.8638 | 295000 | 0.0022 | 0.7699 |
4.8721 | 295500 | 0.0034 | - |
4.8803 | 296000 | 0.0018 | - |
4.8885 | 296500 | 0.0026 | - |
4.8968 | 297000 | 0.0039 | - |
4.9050 | 297500 | 0.0034 | - |
4.9133 | 298000 | 0.0023 | - |
4.9215 | 298500 | 0.0023 | - |
4.9298 | 299000 | 0.0046 | - |
4.9380 | 299500 | 0.0026 | - |
4.9463 | 300000 | 0.0035 | 0.7696 |
4.9545 | 300500 | 0.0028 | - |
4.9627 | 301000 | 0.003 | - |
4.9710 | 301500 | 0.0031 | - |
4.9792 | 302000 | 0.0037 | - |
4.9875 | 302500 | 0.0029 | - |
4.9957 | 303000 | 0.0039 | - |
5.0 | 303260 | - | 0.7695 |
Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.4.1
- Transformers: 4.50.3
- PyTorch: 2.6.0+cu124
- Accelerate: 1.5.2
- Datasets: 3.5.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 5
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for Shuu12121/CodeSearch-ModernBERT-Owl-ALT
Base model
Shuu12121/CodeModernBERT-OwlEvaluation results
- Cosine Accuracy@1 on code docstring retrievalself-reported0.557
- Cosine Accuracy@3 on code docstring retrievalself-reported0.861
- Cosine Accuracy@5 on code docstring retrievalself-reported0.902
- Cosine Accuracy@10 on code docstring retrievalself-reported0.930
- Cosine Precision@1 on code docstring retrievalself-reported0.557
- Cosine Precision@3 on code docstring retrievalself-reported0.287
- Cosine Precision@5 on code docstring retrievalself-reported0.180
- Cosine Precision@10 on code docstring retrievalself-reported0.093
- Cosine Recall@1 on code docstring retrievalself-reported0.557
- Cosine Recall@3 on code docstring retrievalself-reported0.861