CodeModernBERT-Owl / README.md
Shuu12121's picture
Update README.md
a5db7a9 verified
---
license: apache-2.0
datasets:
- Shuu12121/rust-codesearch-dataset-open
- Shuu12121/java-codesearch-dataset-open
- code-search-net/code_search_net
- google/code_x_glue_ct_code_to_text
language:
- en
pipeline_tag: sentence-similarity
tags:
- code
- code-search
- retrieval
- sentence-similarity
- bert
- transformers
- deep-learning
- machine-learning
- nlp
- programming
- multi-language
- rust
- python
- java
- javascript
- php
- ruby
- go
---
# **CodeModernBERT-Owl**
## **概要 / Overview**
### **🦉 CodeModernBERT-Owl: 高精度なコード検索 & コード理解モデル**
**CodeModernBERT-Owl** is a **pretrained model** designed from scratch for **code search and code understanding tasks**.
Compared to previous versions such as **CodeHawks-ModernBERT** and **CodeMorph-ModernBERT**, this model **now supports Rust** and **improves search accuracy** in Python, PHP, Java, JavaScript, Go, and Ruby.
### **🛠 主な特徴 / Key Features**
**Supports long sequences up to 2048 tokens** (compared to Microsoft's 512-token models)
**Optimized for code search, code understanding, and code clone detection**
**Fine-tuned on GitHub open-source repositories (Java, Rust)**
**Achieves the highest accuracy among the CodeHawks/CodeMorph series**
**Multi-language support**: **Python, PHP, Java, JavaScript, Go, Ruby, and Rust**
---
## **📊 モデルパラメータ / Model Parameters**
| パラメータ / Parameter | 値 / Value |
|-------------------------|------------|
| **vocab_size** | 50,004 |
| **hidden_size** | 768 |
| **num_hidden_layers** | 12 |
| **num_attention_heads**| 12 |
| **intermediate_size** | 3,072 |
| **max_position_embeddings** | 2,048 |
| **type_vocab_size** | 2 |
| **hidden_dropout_prob**| 0.1 |
| **attention_probs_dropout_prob** | 0.1 |
| **local_attention_window** | 128 |
| **rope_theta** | 160,000 |
| **local_attention_rope_theta** | 10,000 |
---
## **💻 モデルの使用方法 / How to Use**
This model can be easily loaded using the **Hugging Face Transformers** library.
⚠️ **Requires transformers >= 4.48.0**
🔗 **[Colab Demo (Replace with "CodeModernBERT-Owl")](https://github.com/Shun0212/CodeBERTPretrained/blob/main/UseMyCodeMorph_ModernBERT.ipynb)**
### **モデルのロード / Load the Model**
```python
from transformers import AutoModelForMaskedLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("Shuu12121/CodeModernBERT-Owl")
model = AutoModelForMaskedLM.from_pretrained("Shuu12121/CodeModernBERT-Owl")
```
### **コード埋め込みの取得 / Get Code Embeddings**
```python
import torch
def get_embedding(text, model, tokenizer, device="cuda"):
inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=256)
if "token_type_ids" in inputs:
inputs.pop("token_type_ids")
inputs = {k: v.to(device) for k, v in inputs.items()}
outputs = model.model(**inputs)
embedding = outputs.last_hidden_state[:, 0, :]
return embedding
embedding = get_embedding("def my_function(): pass", model, tokenizer)
print(embedding.shape)
```
---
# **🔍 評価結果 / Evaluation Results**
### **データセット / Dataset**
📌 **Tested on code_x_glue_ct_code_to_text with a candidate pool size of 100.**
📌 **Rust-specific evaluations were conducted using Shuu12121/rust-codesearch-dataset-open.**
---
## **📈 主要な評価指標の比較(同一シード値)/ Key Evaluation Metrics (Same Seed)**
| 言語 / Language | **CodeModernBERT-Owl** | **CodeHawks-ModernBERT** | **Salesforce CodeT5+** | **Microsoft CodeBERT** | **GraphCodeBERT** |
|-----------|-----------------|----------------------|-----------------|------------------|------------------|
| **Python** | **0.8793** | 0.8551 | 0.8266 | 0.5243 | 0.5493 |
| **Java** | **0.8880** | 0.7971 | **0.8867** | 0.3134 | 0.5879 |
| **JavaScript** | **0.8423** | 0.7634 | 0.7628 | 0.2694 | 0.5051 |
| **PHP** | **0.9129** | 0.8578 | **0.9027** | 0.2642 | 0.6225 |
| **Ruby** | **0.8038** | 0.7469 | **0.7568** | 0.3318 | 0.5876 |
| **Go** | **0.9386** | 0.9043 | 0.8117 | 0.3262 | 0.4243 |
**Achieves the highest accuracy in all target languages.**
**Significantly improved Java accuracy using additional fine-tuned GitHub data.**
**Outperforms previous models, especially in PHP and Go.**
---
## **📊 Rust (独自データセット) / Rust Performance**
| 指標 / Metric | **CodeModernBERT-Owl** |
|--------------|----------------|
| **MRR** | 0.7940 |
| **MAP** | 0.7940 |
| **R-Precision** | 0.7173 |
### **📌 K別評価指標 / Evaluation Metrics by K**
| K | **Recall@K** | **Precision@K** | **NDCG@K** | **F1@K** | **Success Rate@K** | **Query Coverage@K** |
|----|-------------|---------------|------------|--------|-----------------|-----------------|
| **1** | 0.7173 | 0.7173 | 0.7173 | 0.7173 | 0.7173 | 0.7173 |
| **5** | 0.8913 | 0.7852 | 0.8118 | 0.8132 | 0.8913 | 0.8913 |
| **10** | 0.9333 | 0.7908 | 0.8254 | 0.8230 | 0.9333 | 0.9333 |
| **50** | 0.9887 | 0.7938 | 0.8383 | 0.8288 | 0.9887 | 0.9887 |
| **100** | 1.0000 | 0.7940 | 0.8401 | 0.8291 | 1.0000 | 1.0000 |
---
## **🔁 別のおすすめモデル / Recommended Alternative Models**
### 1. **CodeSearch-ModernBERT-Owl🦉** (https://huggingface.co/Shuu12121/CodeSearch-ModernBERT-Owl)
If you need a model that is **more specialized for code search**, this model is highly recommended.
コードサーチに**特化したモデルが必要な場合**はこちらがおすすめです。
### 2. **CodeModernBERT-Snake🐍** (https://huggingface.co/Shuu12121/CodeModernBERT-Snake)
If you need a pretrained model that supports **longer sequences or a smaller model size**, this model is ideal.
**シーケンス長が長い**、または**モデルサイズが小さい**事前学習済みモデルが必要な場合はこちらをおすすめします。
- **Maximum Sequence Length:** 8192 tokens
- **Smaller Model Size:** ~75M parameters
### 3. **CodeSearch-ModernBERT-Snake🐍** (https://huggingface.co/Shuu12121/CodeSearch-ModernBERT-Snake)
For those looking for a model that combines **long sequence length and code search specialization**, this model is the best choice.
**コードサーチに特化しつつ長いシーケンスを処理できるモデル**が欲しい場合にはこちらがおすすめです。
- **Maximum Sequence Length:** 8192 tokens
- **High Code Search Performance**
## **📝 結論 / Conclusion**
**Top performance in all languages**
**Rust support successfully added through dataset augmentation**
**Further performance improvements possible with better datasets**
---
## **📜 ライセンス / License**
📄 **Apache-2.0**
## **📧 連絡先 / Contact**
📩 **For any questions, please contact:**
📧 **[email protected]**