metadata
license: cc-by-4.0
base_model: NazaGara/NER-fine-tuned-BETO
tags:
- generated_from_trainer
datasets:
- conll2002
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: NER-finetuning-BETO
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: conll2002
type: conll2002
config: es
split: validation
args: es
metrics:
- name: Precision
type: precision
value: 0.8414992097538948
- name: Recall
type: recall
value: 0.8563878676470589
- name: F1
type: f1
value: 0.8488782598792848
- name: Accuracy
type: accuracy
value: 0.9704469377634515
NER-finetuning-BETO
This model is a fine-tuned version of NazaGara/NER-fine-tuned-BETO on the conll2002 dataset. It achieves the following results on the evaluation set:
- Loss: 0.2009
- Precision: 0.8415
- Recall: 0.8564
- F1: 0.8489
- Accuracy: 0.9704
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.0499 | 1.0 | 1041 | 0.1461 | 0.8328 | 0.8573 | 0.8449 | 0.9695 |
0.0288 | 2.0 | 2082 | 0.1672 | 0.8244 | 0.8564 | 0.8401 | 0.9694 |
0.0173 | 3.0 | 3123 | 0.1694 | 0.8487 | 0.8672 | 0.8578 | 0.9715 |
0.0119 | 4.0 | 4164 | 0.2023 | 0.8434 | 0.8525 | 0.8479 | 0.9695 |
0.0084 | 5.0 | 5205 | 0.2009 | 0.8415 | 0.8564 | 0.8489 | 0.9704 |
Framework versions
- Transformers 4.41.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1