|
--- |
|
license: apache-2.0 |
|
base_model: distilbert-base-uncased |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: distilbert_finetune_own_data_model |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# distilbert_finetune_own_data_model |
|
|
|
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0053 |
|
- Precision: 1.0 |
|
- Recall: 1.0 |
|
- F1: 1.0 |
|
- Accuracy: 1.0 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 30 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 1.0 | 3 | 0.8131 | 1.0 | 0.25 | 0.4 | 0.76 | |
|
| No log | 2.0 | 6 | 0.6099 | 1.0 | 0.25 | 0.4 | 0.76 | |
|
| No log | 3.0 | 9 | 0.4666 | 1.0 | 0.25 | 0.4 | 0.76 | |
|
| No log | 4.0 | 12 | 0.3527 | 1.0 | 0.625 | 0.7692 | 0.88 | |
|
| No log | 5.0 | 15 | 0.2583 | 1.0 | 0.875 | 0.9333 | 0.96 | |
|
| No log | 6.0 | 18 | 0.1838 | 1.0 | 1.0 | 1.0 | 1.0 | |
|
| No log | 7.0 | 21 | 0.1230 | 1.0 | 1.0 | 1.0 | 1.0 | |
|
| No log | 8.0 | 24 | 0.0776 | 1.0 | 1.0 | 1.0 | 1.0 | |
|
| No log | 9.0 | 27 | 0.0543 | 1.0 | 1.0 | 1.0 | 1.0 | |
|
| No log | 10.0 | 30 | 0.0427 | 1.0 | 1.0 | 1.0 | 1.0 | |
|
| No log | 11.0 | 33 | 0.0378 | 1.0 | 1.0 | 1.0 | 1.0 | |
|
| No log | 12.0 | 36 | 0.0345 | 1.0 | 1.0 | 1.0 | 1.0 | |
|
| No log | 13.0 | 39 | 0.0323 | 1.0 | 1.0 | 1.0 | 1.0 | |
|
| No log | 14.0 | 42 | 0.0280 | 1.0 | 1.0 | 1.0 | 1.0 | |
|
| No log | 15.0 | 45 | 0.0228 | 1.0 | 1.0 | 1.0 | 1.0 | |
|
| No log | 16.0 | 48 | 0.0180 | 1.0 | 1.0 | 1.0 | 1.0 | |
|
| No log | 17.0 | 51 | 0.0141 | 1.0 | 1.0 | 1.0 | 1.0 | |
|
| No log | 18.0 | 54 | 0.0117 | 1.0 | 1.0 | 1.0 | 1.0 | |
|
| No log | 19.0 | 57 | 0.0104 | 1.0 | 1.0 | 1.0 | 1.0 | |
|
| No log | 20.0 | 60 | 0.0094 | 1.0 | 1.0 | 1.0 | 1.0 | |
|
| No log | 21.0 | 63 | 0.0086 | 1.0 | 1.0 | 1.0 | 1.0 | |
|
| No log | 22.0 | 66 | 0.0079 | 1.0 | 1.0 | 1.0 | 1.0 | |
|
| No log | 23.0 | 69 | 0.0074 | 1.0 | 1.0 | 1.0 | 1.0 | |
|
| No log | 24.0 | 72 | 0.0069 | 1.0 | 1.0 | 1.0 | 1.0 | |
|
| No log | 25.0 | 75 | 0.0063 | 1.0 | 1.0 | 1.0 | 1.0 | |
|
| No log | 26.0 | 78 | 0.0059 | 1.0 | 1.0 | 1.0 | 1.0 | |
|
| No log | 27.0 | 81 | 0.0056 | 1.0 | 1.0 | 1.0 | 1.0 | |
|
| No log | 28.0 | 84 | 0.0054 | 1.0 | 1.0 | 1.0 | 1.0 | |
|
| No log | 29.0 | 87 | 0.0053 | 1.0 | 1.0 | 1.0 | 1.0 | |
|
| No log | 30.0 | 90 | 0.0053 | 1.0 | 1.0 | 1.0 | 1.0 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.38.2 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.2 |
|
|