Safetensors
SpiritSight-Agent-2B / infer_SSAgent-2B.py
huangzhiyuan's picture
first commit
a197764
import re
import torch
import torchvision.transforms as T
from PIL import Image
from torchvision.transforms.functional import InterpolationMode
from transformers import AutoModel, AutoTokenizer
IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)
def build_transform(is_train, input_size, pad2square=False, normalize_type='imagenet'):
if normalize_type == 'imagenet':
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
else:
raise NotImplementedError
if is_train: # use data augumentation
transform = T.Compose([
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
T.RandomResizedCrop(input_size, scale=(0.8, 1.0), ratio=(3. / 4., 4. / 3.),
interpolation=InterpolationMode.BICUBIC),
T.ToTensor(),
T.Normalize(mean=MEAN, std=STD)
])
else:
transform = T.Compose([
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
T.ToTensor(),
T.Normalize(mean=MEAN, std=STD)
])
return transform
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
best_ratio_diff = float('inf')
best_ratio = (1, 1)
area = width * height
for ratio in target_ratios:
target_aspect_ratio = ratio[0] / ratio[1]
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
if ratio_diff < best_ratio_diff:
best_ratio_diff = ratio_diff
best_ratio = ratio
elif ratio_diff == best_ratio_diff:
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
best_ratio = ratio
# print(f'width: {width}, height: {height}, best_ratio: {best_ratio}')
return best_ratio
def dynamic_preprocess(image, min_num=1, max_num=6, image_size=448, use_thumbnail=False):
orig_width, orig_height = image.size
aspect_ratio = orig_width / orig_height
# calculate the existing image aspect ratio
target_ratios = set(
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
i * j <= max_num and i * j >= min_num)
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
# find the closest aspect ratio to the target
target_aspect_ratio = find_closest_aspect_ratio(
aspect_ratio, target_ratios, orig_width, orig_height, image_size)
# calculate the target width and height
target_width = image_size * target_aspect_ratio[0]
target_height = image_size * target_aspect_ratio[1]
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
# resize the image
resized_img = image.resize((target_width, target_height))
processed_images = []
for i in range(blocks):
box = (
(i % (target_width // image_size)) * image_size,
(i // (target_width // image_size)) * image_size,
((i % (target_width // image_size)) + 1) * image_size,
((i // (target_width // image_size)) + 1) * image_size
)
# split the image
split_img = resized_img.crop(box)
processed_images.append(split_img)
assert len(processed_images) == blocks
if use_thumbnail and len(processed_images) != 1:
thumbnail_img = image.resize((image_size, image_size))
processed_images.append(thumbnail_img)
return processed_images, target_aspect_ratio
def image_process(image_path, config):
image = Image.open(image_path).convert('RGB')
transform = build_transform(is_train=False, input_size=config.vision_config.image_size,
pad2square=config.pad2square, normalize_type='imagenet')
if config.dynamic_image_size:
images, target_aspect_ratio = dynamic_preprocess(image, min_num=config.min_dynamic_patch, max_num=config.max_dynamic_patch,
image_size=config.vision_config.image_size, use_thumbnail=config.use_thumbnail)
else:
images = [image]
pixel_values = [transform(image) for image in images]
pixel_values = torch.stack(pixel_values)
return pixel_values.to(torch.bfloat16).cuda(), torch.tensor([[target_aspect_ratio[0], target_aspect_ratio[1]]], dtype=torch.long)
def parse_block_pos(str_, target_aspect_ratio):
block_num_w, block_num_h = target_aspect_ratio[0][0], target_aspect_ratio[0][1]
action, location, direction, location_or_text = None, None, None, None
str_ = str_.strip()
match = re.match(r'^(.*?)\((.*?)\)$', str_)
if match:
action, location_or_text = match.groups()
if action == 'CLICK':
match = re.match(r'^\[(\d{1}), (\d{3}), (\d{3})\].*?$', location_or_text)
if match:
block_idx, cx, cy = match.groups()
block_idx = int(block_idx)
cx = int(cx)
cy = int(cy)
cx += (block_idx % block_num_w) * 1000
cy += (block_idx // block_num_w) * 1000
cx /= block_num_w * 1000
cy /= block_num_h * 1000
location = [cx, cy]
else:
print(location_or_text)
elif action.startswith('SWIPE_'):
action, direction = action.split('_', 1)
return {
'action': action,
'location': location,
'direction': direction,
'content': location_or_text
}
question_template = '''## Task: {task}
## History Actions:
{history}
## Action Space
1. CLICK([block_index, cx, cy], "text")
2. TYPE("text")
3. PRESS_BACK()
4. PRESS_HOME()
5. PRESS_ENTER()
6. SWIPE_UP()
7. SWIPE_DOWN()
8. SWIPE_LEFT()
9. SWIPE_RIGHT()
10. COMPLETED()
## Requirements: Please infer the next action according to the Task and History Actions. Think step by step. Return with Image Description, Next Action Description and Action Code. The Action Code should follow the definition in the Action Space.'''
path = './SpiritSight-Agent-2B-base'
model = AutoModel.from_pretrained(
path,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
# use_flash_attn=False,
trust_remote_code=True).eval().cuda()
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)
task = "Go to search bar in Google Chrome then search for walmart."
history = ""
question = question_template.format(task=task, history=history)
image_path = './image.png'
pixel_values, target_aspect_ratio = image_process(image_path, model.config)
generation_config = dict(max_new_tokens=1024, do_sample=True)
response = model.chat(
tokenizer=tokenizer,
pixel_values=pixel_values,
question=question,
target_aspect_ratio=target_aspect_ratio,
generation_config=generation_config
)
print(response)
action_code_str = response.split()[-1]
action_code = parse_block_pos(action_code_str, target_aspect_ratio.cpu().numpy())
print(action_code)