Safetensors
huangzhiyuan commited on
Commit
a197764
·
1 Parent(s): 9580ef3

first commit

Browse files
README.md CHANGED
@@ -1,3 +1,78 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model:
4
+ - OpenGVLab/InternVL2-2B
5
+ ---
6
+
7
+ ## SpiritSight Agent: Advanced GUI Agent with One Look
8
+
9
+ <p align="center">
10
+ <a href="https://arxiv.org/abs/2503.03196">📄 Paper</a> •
11
+ <a href="https://huggingface.co/SenseLLM/SpiritSight-Agent-2B">🤖 Models</a> •
12
+ <a href="" style="pointer-events: none">📚 Datasets (Coming soon…)</a>
13
+ </p>
14
+
15
+
16
+ ## Introduction
17
+
18
+ SpiritSight-Agent is a vision-based, end-to-end GUI agent that excels in GUI navigation tasks across various GUI platforms.
19
+
20
+ ![](results.png)
21
+ ![](results2.png)
22
+
23
+
24
+ ## Models
25
+
26
+ We recommend fine-tuning the base model on custom data.
27
+
28
+ | Model | Checkpoint | Size | License|
29
+ |:-------|:------------|:------|:--------|
30
+ | SpiritSight-Agent-2B-base | 🤗 [HF Link](https://huggingface.co/SenseLLM/SpiritSight-Agent-2B) | 2B | [InternVL](https://github.com/OpenGVLab/InternVL/blob/main/LICENSE) |
31
+ | SpiritSight-Agent-8B-base | 🤗 [HF Link](https://huggingface.co/SenseLLM/SpiritSight-Agent-8B) | 8B | [InternVL](https://github.com/OpenGVLab/InternVL/blob/main/LICENSE) |
32
+ | SpiritSight-Agent-26B-base | 🤗 [HF Link](https://huggingface.co/SenseLLM/SpiritSight-Agent-26B) | 26B | [InternVL](https://github.com/OpenGVLab/InternVL/blob/main/LICENSE) |
33
+
34
+
35
+ ## Datasets
36
+
37
+ Coming soon.
38
+
39
+
40
+ ## Inference
41
+
42
+ ```shell
43
+ conda create -n spiritsight-agent python=3.9
44
+
45
+ pip install -r requirements.txt
46
+ pip install flash-attn==2.3.6 --no-build-isolation
47
+
48
+ python infer_SSAgent-2B.py
49
+ ```
50
+
51
+
52
+ ## Citation
53
+
54
+ If you find this repo useful for your research, please kindly cite our paper:
55
+ ```
56
+ @misc{huang2025spiritsightagentadvancedgui,
57
+ title={SpiritSight Agent: Advanced GUI Agent with One Look},
58
+ author={Zhiyuan Huang and Ziming Cheng and Junting Pan and Zhaohui Hou and Mingjie Zhan},
59
+ year={2025},
60
+ eprint={2503.03196},
61
+ archivePrefix={arXiv},
62
+ primaryClass={cs.CV},
63
+ url={https://arxiv.org/abs/2503.03196},
64
+ }
65
+ ```
66
+
67
+
68
+ ## Acknowledgments
69
+
70
+ We thank the following amazing projects that truly inspired us:
71
+
72
+ - [InternVL2](https://huggingface.co/OpenGVLab/InternVL2-8B)
73
+ - [SeeClick]( https://github.com/njucckevin/SeeClick)
74
+ - [Mind2Web](https://huggingface.co/datasets/osunlp/Multimodal-Mind2Web)
75
+ - [GUI-Odyssey](https://github.com/OpenGVLab/GUI-Odyssey)
76
+ - [AMEX](https://huggingface.co/datasets/Yuxiang007/AMEX)
77
+ - [AndroidControl](https://github.com/google-research/google-research/tree/master/android_control)
78
+ - [GUICourse](https://github.com/yiye3/GUICourse)
SpiritSight-Agent-2B-base/added_tokens.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</box>": 92552,
3
+ "</img>": 92545,
4
+ "</quad>": 92548,
5
+ "</ref>": 92550,
6
+ "<IMG_CONTEXT>": 92546,
7
+ "<box>": 92551,
8
+ "<img>": 92544,
9
+ "<node_separator>": 92553,
10
+ "<quad>": 92547,
11
+ "<ref>": 92549
12
+ }
SpiritSight-Agent-2B-base/config.json ADDED
@@ -0,0 +1,207 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_commit_hash": null,
3
+ "_name_or_path": "OpenGVLab/InternVL2-2B",
4
+ "architectures": [
5
+ "InternVLChatModel"
6
+ ],
7
+ "auto_map": {
8
+ "AutoConfig": "configuration_internvl_chat.InternVLChatConfig",
9
+ "AutoModel": "modeling_internvl_chat.InternVLChatModel",
10
+ "AutoModelForCausalLM": "modeling_internvl_chat.InternVLChatModel"
11
+ },
12
+ "block_max_len": 16,
13
+ "block_position_embedding": "v1",
14
+ "block_revise": false,
15
+ "downsample_ratio": 0.5,
16
+ "dynamic_image_size": true,
17
+ "force_image_size": 448,
18
+ "llm_config": {
19
+ "_name_or_path": "internlm/internlm2-chat-1_8b",
20
+ "add_cross_attention": false,
21
+ "architectures": [
22
+ "InternLM2ForCausalLM"
23
+ ],
24
+ "attn_implementation": "flash_attention_2",
25
+ "auto_map": {
26
+ "AutoConfig": "configuration_internlm2.InternLM2Config",
27
+ "AutoModel": "modeling_internlm2.InternLM2ForCausalLM",
28
+ "AutoModelForCausalLM": "modeling_internlm2.InternLM2ForCausalLM"
29
+ },
30
+ "bad_words_ids": null,
31
+ "begin_suppress_tokens": null,
32
+ "bias": false,
33
+ "bos_token_id": 1,
34
+ "chunk_size_feed_forward": 0,
35
+ "cross_attention_hidden_size": null,
36
+ "decoder_start_token_id": null,
37
+ "diversity_penalty": 0.0,
38
+ "do_sample": false,
39
+ "early_stopping": false,
40
+ "encoder_no_repeat_ngram_size": 0,
41
+ "eos_token_id": 2,
42
+ "exponential_decay_length_penalty": null,
43
+ "finetuning_task": null,
44
+ "forced_bos_token_id": null,
45
+ "forced_eos_token_id": null,
46
+ "hidden_act": "silu",
47
+ "hidden_size": 2048,
48
+ "id2label": {
49
+ "0": "LABEL_0",
50
+ "1": "LABEL_1"
51
+ },
52
+ "initializer_range": 0.02,
53
+ "intermediate_size": 8192,
54
+ "is_decoder": false,
55
+ "is_encoder_decoder": false,
56
+ "label2id": {
57
+ "LABEL_0": 0,
58
+ "LABEL_1": 1
59
+ },
60
+ "length_penalty": 1.0,
61
+ "max_length": 20,
62
+ "max_position_embeddings": 32768,
63
+ "min_length": 0,
64
+ "model_type": "internlm2",
65
+ "no_repeat_ngram_size": 0,
66
+ "num_attention_heads": 16,
67
+ "num_beam_groups": 1,
68
+ "num_beams": 1,
69
+ "num_hidden_layers": 24,
70
+ "num_key_value_heads": 8,
71
+ "num_return_sequences": 1,
72
+ "output_attentions": false,
73
+ "output_hidden_states": false,
74
+ "output_scores": false,
75
+ "pad_token_id": 2,
76
+ "prefix": null,
77
+ "problem_type": null,
78
+ "pruned_heads": {},
79
+ "remove_invalid_values": false,
80
+ "repetition_penalty": 1.0,
81
+ "return_dict": true,
82
+ "return_dict_in_generate": false,
83
+ "rms_norm_eps": 1e-05,
84
+ "rope_scaling": {
85
+ "factor": 2.0,
86
+ "type": "dynamic"
87
+ },
88
+ "rope_theta": 1000000,
89
+ "sep_token_id": null,
90
+ "suppress_tokens": null,
91
+ "task_specific_params": null,
92
+ "temperature": 1.0,
93
+ "tf_legacy_loss": false,
94
+ "tie_encoder_decoder": false,
95
+ "tie_word_embeddings": false,
96
+ "tokenizer_class": null,
97
+ "top_k": 50,
98
+ "top_p": 1.0,
99
+ "torch_dtype": "bfloat16",
100
+ "torchscript": false,
101
+ "transformers_version": "4.37.2",
102
+ "typical_p": 1.0,
103
+ "use_bfloat16": true,
104
+ "use_cache": false,
105
+ "vocab_size": 92554
106
+ },
107
+ "max_dynamic_patch": 6,
108
+ "min_dynamic_patch": 1,
109
+ "model_type": "internvl_chat",
110
+ "pad2square": false,
111
+ "ps_version": "v2",
112
+ "select_layer": -1,
113
+ "target_aspect_ratio_h": null,
114
+ "target_aspect_ratio_w": null,
115
+ "template": "internlm2-chat",
116
+ "torch_dtype": "bfloat16",
117
+ "transformers_version": null,
118
+ "use_backbone_alpha": 0,
119
+ "use_backbone_lora": 0,
120
+ "use_llm_alpha": 0,
121
+ "use_llm_lora": 0,
122
+ "use_thumbnail": false,
123
+ "vision_config": {
124
+ "_name_or_path": "",
125
+ "add_cross_attention": false,
126
+ "architectures": [
127
+ "InternVisionModel"
128
+ ],
129
+ "attention_dropout": 0.0,
130
+ "bad_words_ids": null,
131
+ "begin_suppress_tokens": null,
132
+ "bos_token_id": null,
133
+ "chunk_size_feed_forward": 0,
134
+ "cross_attention_hidden_size": null,
135
+ "decoder_start_token_id": null,
136
+ "diversity_penalty": 0.0,
137
+ "do_sample": false,
138
+ "drop_path_rate": 0.05,
139
+ "dropout": 0.0,
140
+ "early_stopping": false,
141
+ "encoder_no_repeat_ngram_size": 0,
142
+ "eos_token_id": null,
143
+ "exponential_decay_length_penalty": null,
144
+ "finetuning_task": null,
145
+ "forced_bos_token_id": null,
146
+ "forced_eos_token_id": null,
147
+ "hidden_act": "gelu",
148
+ "hidden_size": 1024,
149
+ "id2label": {
150
+ "0": "LABEL_0",
151
+ "1": "LABEL_1"
152
+ },
153
+ "image_size": 448,
154
+ "initializer_factor": 1.0,
155
+ "initializer_range": 0.02,
156
+ "intermediate_size": 4096,
157
+ "is_decoder": false,
158
+ "is_encoder_decoder": false,
159
+ "label2id": {
160
+ "LABEL_0": 0,
161
+ "LABEL_1": 1
162
+ },
163
+ "layer_norm_eps": 1e-06,
164
+ "length_penalty": 1.0,
165
+ "max_length": 20,
166
+ "min_length": 0,
167
+ "model_type": "intern_vit_6b",
168
+ "no_repeat_ngram_size": 0,
169
+ "norm_type": "layer_norm",
170
+ "num_attention_heads": 16,
171
+ "num_beam_groups": 1,
172
+ "num_beams": 1,
173
+ "num_channels": 3,
174
+ "num_hidden_layers": 24,
175
+ "num_return_sequences": 1,
176
+ "output_attentions": false,
177
+ "output_hidden_states": false,
178
+ "output_scores": false,
179
+ "pad_token_id": null,
180
+ "patch_size": 14,
181
+ "prefix": null,
182
+ "problem_type": null,
183
+ "pruned_heads": {},
184
+ "qk_normalization": false,
185
+ "qkv_bias": true,
186
+ "remove_invalid_values": false,
187
+ "repetition_penalty": 1.0,
188
+ "return_dict": true,
189
+ "return_dict_in_generate": false,
190
+ "sep_token_id": null,
191
+ "suppress_tokens": null,
192
+ "task_specific_params": null,
193
+ "temperature": 1.0,
194
+ "tf_legacy_loss": false,
195
+ "tie_encoder_decoder": false,
196
+ "tie_word_embeddings": true,
197
+ "tokenizer_class": null,
198
+ "top_k": 50,
199
+ "top_p": 1.0,
200
+ "torch_dtype": "bfloat16",
201
+ "torchscript": false,
202
+ "transformers_version": "4.37.2",
203
+ "typical_p": 1.0,
204
+ "use_bfloat16": true,
205
+ "use_flash_attn": true
206
+ }
207
+ }
SpiritSight-Agent-2B-base/configuration_intern_vit.py ADDED
@@ -0,0 +1,119 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # InternVL
3
+ # Copyright (c) 2023 OpenGVLab
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # --------------------------------------------------------
6
+ import os
7
+ from typing import Union
8
+
9
+ from transformers.configuration_utils import PretrainedConfig
10
+ from transformers.utils import logging
11
+
12
+ logger = logging.get_logger(__name__)
13
+
14
+
15
+ class InternVisionConfig(PretrainedConfig):
16
+ r"""
17
+ This is the configuration class to store the configuration of a [`InternVisionModel`]. It is used to
18
+ instantiate a vision encoder according to the specified arguments, defining the model architecture.
19
+
20
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
21
+ documentation from [`PretrainedConfig`] for more information.
22
+
23
+ Args:
24
+ num_channels (`int`, *optional*, defaults to 3):
25
+ Number of color channels in the input images (e.g., 3 for RGB).
26
+ patch_size (`int`, *optional*, defaults to 14):
27
+ The size (resolution) of each patch.
28
+ image_size (`int`, *optional*, defaults to 224):
29
+ The size (resolution) of each image.
30
+ qkv_bias (`bool`, *optional*, defaults to `False`):
31
+ Whether to add a bias to the queries and values in the self-attention layers.
32
+ hidden_size (`int`, *optional*, defaults to 3200):
33
+ Dimensionality of the encoder layers and the pooler layer.
34
+ num_attention_heads (`int`, *optional*, defaults to 25):
35
+ Number of attention heads for each attention layer in the Transformer encoder.
36
+ intermediate_size (`int`, *optional*, defaults to 12800):
37
+ Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
38
+ qk_normalization (`bool`, *optional*, defaults to `True`):
39
+ Whether to normalize the queries and keys in the self-attention layers.
40
+ num_hidden_layers (`int`, *optional*, defaults to 48):
41
+ Number of hidden layers in the Transformer encoder.
42
+ use_flash_attn (`bool`, *optional*, defaults to `True`):
43
+ Whether to use flash attention mechanism.
44
+ hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
45
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
46
+ `"relu"`, `"selu"` and `"gelu_new"` ``"gelu"` are supported.
47
+ layer_norm_eps (`float`, *optional*, defaults to 1e-6):
48
+ The epsilon used by the layer normalization layers.
49
+ dropout (`float`, *optional*, defaults to 0.0):
50
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
51
+ drop_path_rate (`float`, *optional*, defaults to 0.0):
52
+ Dropout rate for stochastic depth.
53
+ attention_dropout (`float`, *optional*, defaults to 0.0):
54
+ The dropout ratio for the attention probabilities.
55
+ initializer_range (`float`, *optional*, defaults to 0.02):
56
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
57
+ initializer_factor (`float`, *optional*, defaults to 0.1):
58
+ A factor for layer scale.
59
+ """
60
+
61
+ model_type = 'intern_vit_6b'
62
+
63
+ def __init__(
64
+ self,
65
+ num_channels=3,
66
+ patch_size=14,
67
+ image_size=224,
68
+ qkv_bias=False,
69
+ hidden_size=3200,
70
+ num_attention_heads=25,
71
+ intermediate_size=12800,
72
+ qk_normalization=True,
73
+ num_hidden_layers=48,
74
+ use_flash_attn=True,
75
+ hidden_act='gelu',
76
+ norm_type='rms_norm',
77
+ layer_norm_eps=1e-6,
78
+ dropout=0.0,
79
+ drop_path_rate=0.0,
80
+ attention_dropout=0.0,
81
+ initializer_range=0.02,
82
+ initializer_factor=0.1,
83
+ **kwargs,
84
+ ):
85
+ super().__init__(**kwargs)
86
+
87
+ self.hidden_size = hidden_size
88
+ self.intermediate_size = intermediate_size
89
+ self.dropout = dropout
90
+ self.drop_path_rate = drop_path_rate
91
+ self.num_hidden_layers = num_hidden_layers
92
+ self.num_attention_heads = num_attention_heads
93
+ self.num_channels = num_channels
94
+ self.patch_size = patch_size
95
+ self.image_size = image_size
96
+ self.initializer_range = initializer_range
97
+ self.initializer_factor = initializer_factor
98
+ self.attention_dropout = attention_dropout
99
+ self.layer_norm_eps = layer_norm_eps
100
+ self.hidden_act = hidden_act
101
+ self.norm_type = norm_type
102
+ self.qkv_bias = qkv_bias
103
+ self.qk_normalization = qk_normalization
104
+ self.use_flash_attn = use_flash_attn
105
+
106
+ @classmethod
107
+ def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> 'PretrainedConfig':
108
+ config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
109
+
110
+ if 'vision_config' in config_dict:
111
+ config_dict = config_dict['vision_config']
112
+
113
+ if 'model_type' in config_dict and hasattr(cls, 'model_type') and config_dict['model_type'] != cls.model_type:
114
+ logger.warning(
115
+ f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
116
+ f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.'
117
+ )
118
+
119
+ return cls.from_dict(config_dict, **kwargs)
SpiritSight-Agent-2B-base/configuration_internlm2.py ADDED
@@ -0,0 +1,150 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
2
+ #
3
+ # This code is based on transformers/src/transformers/models/llama/configuration_llama.py
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """ InternLM2 model configuration"""
17
+
18
+ from transformers.configuration_utils import PretrainedConfig
19
+ from transformers.utils import logging
20
+
21
+ logger = logging.get_logger(__name__)
22
+
23
+ INTERNLM2_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
24
+
25
+
26
+ # Modified from transformers.model.llama.configuration_llama.LlamaConfig
27
+ class InternLM2Config(PretrainedConfig):
28
+ r"""
29
+ This is the configuration class to store the configuration of a [`InternLM2Model`]. It is used to instantiate
30
+ an InternLM2 model according to the specified arguments, defining the model architecture. Instantiating a
31
+ configuration with the defaults will yield a similar configuration to that of the InternLM2-7B.
32
+
33
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
34
+ documentation from [`PretrainedConfig`] for more information.
35
+
36
+
37
+ Args:
38
+ vocab_size (`int`, *optional*, defaults to 32000):
39
+ Vocabulary size of the InternLM2 model. Defines the number of different tokens that can be represented by the
40
+ `inputs_ids` passed when calling [`InternLM2Model`]
41
+ hidden_size (`int`, *optional*, defaults to 4096):
42
+ Dimension of the hidden representations.
43
+ intermediate_size (`int`, *optional*, defaults to 11008):
44
+ Dimension of the MLP representations.
45
+ num_hidden_layers (`int`, *optional*, defaults to 32):
46
+ Number of hidden layers in the Transformer encoder.
47
+ num_attention_heads (`int`, *optional*, defaults to 32):
48
+ Number of attention heads for each attention layer in the Transformer encoder.
49
+ num_key_value_heads (`int`, *optional*):
50
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
51
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
52
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
53
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
54
+ by meanpooling all the original heads within that group. For more details checkout [this
55
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
56
+ `num_attention_heads`.
57
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
58
+ The non-linear activation function (function or string) in the decoder.
59
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
60
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
61
+ just in case (e.g., 512 or 1024 or 2048).
62
+ initializer_range (`float`, *optional*, defaults to 0.02):
63
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
64
+ rms_norm_eps (`float`, *optional*, defaults to 1e-12):
65
+ The epsilon used by the rms normalization layers.
66
+ use_cache (`bool`, *optional*, defaults to `True`):
67
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
68
+ relevant if `config.is_decoder=True`.
69
+ tie_word_embeddings(`bool`, *optional*, defaults to `False`):
70
+ Whether to tie weight embeddings
71
+ Example:
72
+
73
+ """
74
+ model_type = 'internlm2'
75
+ _auto_class = 'AutoConfig'
76
+
77
+ def __init__( # pylint: disable=W0102
78
+ self,
79
+ vocab_size=103168,
80
+ hidden_size=4096,
81
+ intermediate_size=11008,
82
+ num_hidden_layers=32,
83
+ num_attention_heads=32,
84
+ num_key_value_heads=None,
85
+ hidden_act='silu',
86
+ max_position_embeddings=2048,
87
+ initializer_range=0.02,
88
+ rms_norm_eps=1e-6,
89
+ use_cache=True,
90
+ pad_token_id=0,
91
+ bos_token_id=1,
92
+ eos_token_id=2,
93
+ tie_word_embeddings=False,
94
+ bias=True,
95
+ rope_theta=10000,
96
+ rope_scaling=None,
97
+ attn_implementation='eager',
98
+ **kwargs,
99
+ ):
100
+ self.vocab_size = vocab_size
101
+ self.max_position_embeddings = max_position_embeddings
102
+ self.hidden_size = hidden_size
103
+ self.intermediate_size = intermediate_size
104
+ self.num_hidden_layers = num_hidden_layers
105
+ self.num_attention_heads = num_attention_heads
106
+ self.bias = bias
107
+
108
+ if num_key_value_heads is None:
109
+ num_key_value_heads = num_attention_heads
110
+ self.num_key_value_heads = num_key_value_heads
111
+
112
+ self.hidden_act = hidden_act
113
+ self.initializer_range = initializer_range
114
+ self.rms_norm_eps = rms_norm_eps
115
+ self.use_cache = use_cache
116
+ self.rope_theta = rope_theta
117
+ self.rope_scaling = rope_scaling
118
+ self._rope_scaling_validation()
119
+
120
+ self.attn_implementation = attn_implementation
121
+ if self.attn_implementation is None:
122
+ self.attn_implementation = 'eager'
123
+ super().__init__(
124
+ pad_token_id=pad_token_id,
125
+ bos_token_id=bos_token_id,
126
+ eos_token_id=eos_token_id,
127
+ tie_word_embeddings=tie_word_embeddings,
128
+ **kwargs,
129
+ )
130
+
131
+ def _rope_scaling_validation(self):
132
+ """
133
+ Validate the `rope_scaling` configuration.
134
+ """
135
+ if self.rope_scaling is None:
136
+ return
137
+
138
+ if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
139
+ raise ValueError(
140
+ '`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, '
141
+ f'got {self.rope_scaling}'
142
+ )
143
+ rope_scaling_type = self.rope_scaling.get('type', None)
144
+ rope_scaling_factor = self.rope_scaling.get('factor', None)
145
+ if rope_scaling_type is None or rope_scaling_type not in ['linear', 'dynamic']:
146
+ raise ValueError(
147
+ f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
148
+ )
149
+ if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor < 1.0:
150
+ raise ValueError(f"`rope_scaling`'s factor field must be a float >= 1, got {rope_scaling_factor}")
SpiritSight-Agent-2B-base/configuration_internvl_chat.py ADDED
@@ -0,0 +1,121 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # InternVL
3
+ # Copyright (c) 2023 OpenGVLab
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # --------------------------------------------------------
6
+
7
+ import copy
8
+
9
+ # from internvl.model.internlm2.configuration_internlm2 import InternLM2Config
10
+ from .configuration_internlm2 import InternLM2Config
11
+ from transformers import AutoConfig, LlamaConfig
12
+ from transformers.configuration_utils import PretrainedConfig
13
+ from transformers.utils import logging
14
+
15
+ from .configuration_intern_vit import InternVisionConfig
16
+
17
+ logger = logging.get_logger(__name__)
18
+
19
+
20
+ class InternVLChatConfig(PretrainedConfig):
21
+ model_type = 'internvl_chat'
22
+ is_composition = True
23
+
24
+ def __init__(
25
+ self,
26
+ vision_config=None,
27
+ llm_config=None,
28
+ use_backbone_lora=0,
29
+ use_llm_lora=0,
30
+ use_backbone_alpha=0,
31
+ use_llm_alpha=0,
32
+ pad2square=False,
33
+ select_layer=-4,
34
+ force_image_size=None,
35
+ downsample_ratio=0.5,
36
+ template=None,
37
+ dynamic_image_size=False,
38
+ use_thumbnail=False,
39
+ ps_version='v1',
40
+ min_dynamic_patch=1,
41
+ max_dynamic_patch=6,
42
+ target_aspect_ratio_w=None,
43
+ target_aspect_ratio_h=None,
44
+ block_revise=False,
45
+ block_position_embedding=None,
46
+ block_max_len=4,
47
+ **kwargs):
48
+ super().__init__(**kwargs)
49
+
50
+ if vision_config is None:
51
+ vision_config = {}
52
+ logger.info('vision_config is None. Initializing the InternVisionConfig with default values.')
53
+
54
+ if llm_config is None:
55
+ llm_config = {}
56
+ logger.info('llm_config is None. Initializing the LlamaConfig config with default values (`LlamaConfig`).')
57
+
58
+ self.vision_config = InternVisionConfig(**vision_config)
59
+ if llm_config['architectures'][0] == 'LlamaForCausalLM':
60
+ self.llm_config = LlamaConfig(**llm_config)
61
+ elif llm_config['architectures'][0] == 'InternLM2ForCausalLM':
62
+ self.llm_config = InternLM2Config(**llm_config)
63
+ else:
64
+ raise ValueError('Unsupported architecture: {}'.format(llm_config['architectures'][0]))
65
+ self.use_backbone_lora = use_backbone_lora
66
+ self.use_llm_lora = use_llm_lora
67
+ self.use_backbone_alpha = use_backbone_alpha
68
+ self.use_llm_alpha = use_llm_alpha
69
+ self.pad2square = pad2square
70
+ self.select_layer = select_layer
71
+ self.force_image_size = force_image_size
72
+ self.downsample_ratio = downsample_ratio
73
+ self.template = template
74
+ self.dynamic_image_size = dynamic_image_size
75
+ self.use_thumbnail = use_thumbnail
76
+ self.ps_version = ps_version # pixel shuffle version
77
+ self.min_dynamic_patch = min_dynamic_patch
78
+ self.max_dynamic_patch = max_dynamic_patch
79
+ self.target_aspect_ratio_w = target_aspect_ratio_w
80
+ self.target_aspect_ratio_h = target_aspect_ratio_h
81
+ self.block_revise = block_revise
82
+ self.block_position_embedding = block_position_embedding
83
+ self.block_max_len = block_max_len
84
+
85
+ logger.info(f'vision_select_layer: {self.select_layer}')
86
+ logger.info(f'ps_version: {self.ps_version}')
87
+ logger.info(f'min_dynamic_patch: {self.min_dynamic_patch}')
88
+ logger.info(f'max_dynamic_patch: {self.max_dynamic_patch}')
89
+
90
+ def to_dict(self):
91
+ """
92
+ Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
93
+
94
+ Returns:
95
+ `Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
96
+ """
97
+ output = copy.deepcopy(self.__dict__)
98
+ output['vision_config'] = self.vision_config.to_dict()
99
+ output['llm_config'] = self.llm_config.to_dict()
100
+ output['model_type'] = self.__class__.model_type
101
+ output['use_backbone_lora'] = self.use_backbone_lora
102
+ output['use_llm_lora'] = self.use_llm_lora
103
+ output['use_backbone_alpha'] = self.use_backbone_alpha
104
+ output['use_llm_alpha'] = self.use_llm_alpha
105
+ output['pad2square'] = self.pad2square
106
+ output['select_layer'] = self.select_layer
107
+ output['force_image_size'] = self.force_image_size
108
+ output['downsample_ratio'] = self.downsample_ratio
109
+ output['template'] = self.template
110
+ output['dynamic_image_size'] = self.dynamic_image_size
111
+ output['use_thumbnail'] = self.use_thumbnail
112
+ output['ps_version'] = self.ps_version
113
+ output['min_dynamic_patch'] = self.min_dynamic_patch
114
+ output['max_dynamic_patch'] = self.max_dynamic_patch
115
+ output['target_aspect_ratio_w'] = self.target_aspect_ratio_w
116
+ output['target_aspect_ratio_h'] = self.target_aspect_ratio_h
117
+ output['block_revise'] = self.block_revise
118
+ output['block_position_embedding'] = self.block_position_embedding
119
+ output['block_max_len'] = self.block_max_len
120
+
121
+ return output
SpiritSight-Agent-2B-base/conversation.py ADDED
@@ -0,0 +1,1303 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Conversation prompt templates.
3
+
4
+ We kindly request that you import fastchat instead of copying this file if you wish to use it.
5
+ If you have any changes in mind, please contribute back so the community can benefit collectively and continue to maintain these valuable templates.
6
+ """
7
+
8
+ import dataclasses
9
+ from enum import IntEnum, auto
10
+ from typing import Any, Dict, List, Tuple, Union
11
+
12
+
13
+ class SeparatorStyle(IntEnum):
14
+ """Separator styles."""
15
+
16
+ ADD_COLON_SINGLE = auto()
17
+ ADD_COLON_TWO = auto()
18
+ ADD_COLON_SPACE_SINGLE = auto()
19
+ NO_COLON_SINGLE = auto()
20
+ NO_COLON_TWO = auto()
21
+ ADD_NEW_LINE_SINGLE = auto()
22
+ LLAMA2 = auto()
23
+ CHATGLM = auto()
24
+ CHATML = auto()
25
+ CHATINTERN = auto()
26
+ DOLLY = auto()
27
+ RWKV = auto()
28
+ PHOENIX = auto()
29
+ ROBIN = auto()
30
+ FALCON_CHAT = auto()
31
+ CHATGLM3 = auto()
32
+ INTERNVL_ZH = auto()
33
+ MPT = auto()
34
+
35
+
36
+ @dataclasses.dataclass
37
+ class Conversation:
38
+ """A class that manages prompt templates and keeps all conversation history."""
39
+
40
+ # The name of this template
41
+ name: str
42
+ # The template of the system prompt
43
+ system_template: str = '{system_message}'
44
+ # The system message
45
+ system_message: str = ''
46
+ # The names of two roles
47
+ roles: Tuple[str] = ('USER', 'ASSISTANT')
48
+ # All messages. Each item is (role, message).
49
+ messages: List[List[str]] = ()
50
+ # The number of few shot examples
51
+ offset: int = 0
52
+ # The separator style and configurations
53
+ sep_style: SeparatorStyle = SeparatorStyle.ADD_COLON_SINGLE
54
+ sep: str = '\n'
55
+ sep2: str = None
56
+ # Stop criteria (the default one is EOS token)
57
+ stop_str: Union[str, List[str]] = None
58
+ # Stops generation if meeting any token in this list
59
+ stop_token_ids: List[int] = None
60
+
61
+ def get_prompt(self) -> str:
62
+ """Get the prompt for generation."""
63
+ system_prompt = self.system_template.format(system_message=self.system_message)
64
+ if self.sep_style == SeparatorStyle.ADD_COLON_SINGLE:
65
+ ret = system_prompt + self.sep
66
+ for role, message in self.messages:
67
+ if message:
68
+ ret += role + ': ' + message + self.sep
69
+ else:
70
+ ret += role + ':'
71
+ return ret
72
+ elif self.sep_style == SeparatorStyle.ADD_COLON_TWO:
73
+ seps = [self.sep, self.sep2]
74
+ ret = system_prompt + seps[0]
75
+ for i, (role, message) in enumerate(self.messages):
76
+ if message:
77
+ ret += role + ': ' + message + seps[i % 2]
78
+ else:
79
+ ret += role + ':'
80
+ return ret
81
+ elif self.sep_style == SeparatorStyle.ADD_COLON_SPACE_SINGLE:
82
+ ret = system_prompt + self.sep
83
+ for role, message in self.messages:
84
+ if message:
85
+ ret += role + ': ' + message + self.sep
86
+ else:
87
+ ret += role + ': ' # must be end with a space
88
+ return ret
89
+ elif self.sep_style == SeparatorStyle.ADD_NEW_LINE_SINGLE:
90
+ ret = '' if system_prompt == '' else system_prompt + self.sep
91
+ for role, message in self.messages:
92
+ if message:
93
+ ret += role + '\n' + message + self.sep
94
+ else:
95
+ ret += role + '\n'
96
+ return ret
97
+ elif self.sep_style == SeparatorStyle.NO_COLON_SINGLE:
98
+ ret = system_prompt
99
+ for role, message in self.messages:
100
+ if message:
101
+ ret += role + message + self.sep
102
+ else:
103
+ ret += role
104
+ return ret
105
+ elif self.sep_style == SeparatorStyle.NO_COLON_TWO:
106
+ seps = [self.sep, self.sep2]
107
+ ret = system_prompt
108
+ for i, (role, message) in enumerate(self.messages):
109
+ if message:
110
+ ret += role + message + seps[i % 2]
111
+ else:
112
+ ret += role
113
+ return ret
114
+ elif self.sep_style == SeparatorStyle.RWKV:
115
+ ret = system_prompt
116
+ for i, (role, message) in enumerate(self.messages):
117
+ if message:
118
+ ret += (
119
+ role
120
+ + ': '
121
+ + message.replace('\r\n', '\n').replace('\n\n', '\n')
122
+ )
123
+ ret += '\n\n'
124
+ else:
125
+ ret += role + ':'
126
+ return ret
127
+ elif self.sep_style == SeparatorStyle.LLAMA2:
128
+ seps = [self.sep, self.sep2]
129
+ if self.system_message:
130
+ ret = system_prompt
131
+ else:
132
+ ret = '[INST] '
133
+ for i, (role, message) in enumerate(self.messages):
134
+ tag = self.roles[i % 2]
135
+ if message:
136
+ if i == 0:
137
+ ret += message + ' '
138
+ else:
139
+ ret += tag + ' ' + message + seps[i % 2]
140
+ else:
141
+ ret += tag
142
+ return ret
143
+ elif self.sep_style == SeparatorStyle.CHATGLM:
144
+ # source: https://huggingface.co/THUDM/chatglm-6b/blob/1d240ba371910e9282298d4592532d7f0f3e9f3e/modeling_chatglm.py#L1302-L1308
145
+ # source2: https://huggingface.co/THUDM/chatglm2-6b/blob/e186c891cf64310ac66ef10a87e6635fa6c2a579/modeling_chatglm.py#L926
146
+ round_add_n = 1 if self.name == 'chatglm2' else 0
147
+ if system_prompt:
148
+ ret = system_prompt + self.sep
149
+ else:
150
+ ret = ''
151
+
152
+ for i, (role, message) in enumerate(self.messages):
153
+ if i % 2 == 0:
154
+ ret += f'[Round {i//2 + round_add_n}]{self.sep}'
155
+
156
+ if message:
157
+ ret += f'{role}:{message}{self.sep}'
158
+ else:
159
+ ret += f'{role}:'
160
+ return ret
161
+ elif self.sep_style == SeparatorStyle.CHATML:
162
+ ret = '' if system_prompt == '' else system_prompt + self.sep + '\n'
163
+ for role, message in self.messages:
164
+ if message:
165
+ ret += role + '\n' + message + self.sep + '\n'
166
+ else:
167
+ ret += role + '\n'
168
+ return ret
169
+ elif self.sep_style == SeparatorStyle.CHATGLM3:
170
+ ret = ''
171
+ if self.system_message:
172
+ ret += system_prompt
173
+ for role, message in self.messages:
174
+ if message:
175
+ ret += role + '\n' + ' ' + message
176
+ else:
177
+ ret += role
178
+ return ret
179
+ elif self.sep_style == SeparatorStyle.CHATINTERN:
180
+ # source: https://huggingface.co/internlm/internlm-chat-7b-8k/blob/bd546fa984b4b0b86958f56bf37f94aa75ab8831/modeling_internlm.py#L771
181
+ seps = [self.sep, self.sep2]
182
+ ret = system_prompt
183
+ for i, (role, message) in enumerate(self.messages):
184
+ # if i % 2 == 0:
185
+ # ret += "<s>"
186
+ if message:
187
+ ret += role + ':' + message + seps[i % 2] + '\n'
188
+ else:
189
+ ret += role + ':'
190
+ return ret
191
+ elif self.sep_style == SeparatorStyle.DOLLY:
192
+ seps = [self.sep, self.sep2]
193
+ ret = system_prompt
194
+ for i, (role, message) in enumerate(self.messages):
195
+ if message:
196
+ ret += role + ':\n' + message + seps[i % 2]
197
+ if i % 2 == 1:
198
+ ret += '\n\n'
199
+ else:
200
+ ret += role + ':\n'
201
+ return ret
202
+ elif self.sep_style == SeparatorStyle.PHOENIX:
203
+ ret = system_prompt
204
+ for role, message in self.messages:
205
+ if message:
206
+ ret += role + ': ' + '<s>' + message + '</s>'
207
+ else:
208
+ ret += role + ': ' + '<s>'
209
+ return ret
210
+ elif self.sep_style == SeparatorStyle.ROBIN:
211
+ ret = system_prompt + self.sep
212
+ for role, message in self.messages:
213
+ if message:
214
+ ret += role + ':\n' + message + self.sep
215
+ else:
216
+ ret += role + ':\n'
217
+ return ret
218
+ elif self.sep_style == SeparatorStyle.FALCON_CHAT:
219
+ ret = ''
220
+ if self.system_message:
221
+ ret += system_prompt + self.sep
222
+ for role, message in self.messages:
223
+ if message:
224
+ ret += role + ': ' + message + self.sep
225
+ else:
226
+ ret += role + ':'
227
+
228
+ return ret
229
+ elif self.sep_style == SeparatorStyle.INTERNVL_ZH:
230
+ seps = [self.sep, self.sep2]
231
+ ret = self.system_message + seps[0]
232
+ for i, (role, message) in enumerate(self.messages):
233
+ if message:
234
+ ret += role + ': ' + message + seps[i % 2]
235
+ else:
236
+ ret += role + ':'
237
+ return ret
238
+ elif self.sep_style == SeparatorStyle.MPT:
239
+ ret = system_prompt + self.sep
240
+ for role, message in self.messages:
241
+ if message:
242
+ if type(message) is tuple:
243
+ message, _, _ = message
244
+ ret += role + message + self.sep
245
+ else:
246
+ ret += role
247
+ return ret
248
+ else:
249
+ raise ValueError(f'Invalid style: {self.sep_style}')
250
+
251
+ def set_system_message(self, system_message: str):
252
+ """Set the system message."""
253
+ self.system_message = system_message
254
+
255
+ def append_message(self, role: str, message: str):
256
+ """Append a new message."""
257
+ self.messages.append([role, message])
258
+
259
+ def update_last_message(self, message: str):
260
+ """Update the last output.
261
+
262
+ The last message is typically set to be None when constructing the prompt,
263
+ so we need to update it in-place after getting the response from a model.
264
+ """
265
+ self.messages[-1][1] = message
266
+
267
+ def to_gradio_chatbot(self):
268
+ """Convert the conversation to gradio chatbot format."""
269
+ ret = []
270
+ for i, (role, msg) in enumerate(self.messages[self.offset :]):
271
+ if i % 2 == 0:
272
+ ret.append([msg, None])
273
+ else:
274
+ ret[-1][-1] = msg
275
+ return ret
276
+
277
+ def to_openai_api_messages(self):
278
+ """Convert the conversation to OpenAI chat completion format."""
279
+ ret = [{'role': 'system', 'content': self.system_message}]
280
+
281
+ for i, (_, msg) in enumerate(self.messages[self.offset :]):
282
+ if i % 2 == 0:
283
+ ret.append({'role': 'user', 'content': msg})
284
+ else:
285
+ if msg is not None:
286
+ ret.append({'role': 'assistant', 'content': msg})
287
+ return ret
288
+
289
+ def copy(self):
290
+ return Conversation(
291
+ name=self.name,
292
+ system_template=self.system_template,
293
+ system_message=self.system_message,
294
+ roles=self.roles,
295
+ messages=[[x, y] for x, y in self.messages],
296
+ offset=self.offset,
297
+ sep_style=self.sep_style,
298
+ sep=self.sep,
299
+ sep2=self.sep2,
300
+ stop_str=self.stop_str,
301
+ stop_token_ids=self.stop_token_ids,
302
+ )
303
+
304
+ def dict(self):
305
+ return {
306
+ 'template_name': self.name,
307
+ 'system_message': self.system_message,
308
+ 'roles': self.roles,
309
+ 'messages': self.messages,
310
+ 'offset': self.offset,
311
+ }
312
+
313
+
314
+ # A global registry for all conversation templates
315
+ conv_templates: Dict[str, Conversation] = {}
316
+
317
+
318
+ def register_conv_template(template: Conversation, override: bool = False):
319
+ """Register a new conversation template."""
320
+ if not override:
321
+ assert (
322
+ template.name not in conv_templates
323
+ ), f'{template.name} has been registered.'
324
+
325
+ conv_templates[template.name] = template
326
+
327
+
328
+ def get_conv_template(name: str) -> Conversation:
329
+ """Get a conversation template."""
330
+ return conv_templates[name].copy()
331
+
332
+
333
+ # An empty template for raw conversation.
334
+ register_conv_template(
335
+ Conversation(
336
+ name='raw',
337
+ system_message='',
338
+ roles=('', ''),
339
+ sep_style=SeparatorStyle.NO_COLON_SINGLE,
340
+ sep='',
341
+ )
342
+ )
343
+
344
+ # A template with a one-shot conversation example
345
+ register_conv_template(
346
+ Conversation(
347
+ name='one_shot',
348
+ system_message='A chat between a curious human and an artificial intelligence assistant. '
349
+ "The assistant gives helpful, detailed, and polite answers to the human's questions.",
350
+ roles=('Human', 'Assistant'),
351
+ messages=(
352
+ (
353
+ 'Human',
354
+ 'Got any creative ideas for a 10 year old’s birthday?',
355
+ ),
356
+ (
357
+ 'Assistant',
358
+ """Of course! Here are some creative ideas for a 10-year-old's birthday party:
359
+ 1. Treasure Hunt: Organize a treasure hunt in your backyard or nearby park. Create clues and riddles for the kids to solve, leading them to hidden treasures and surprises.
360
+ 2. Science Party: Plan a science-themed party where kids can engage in fun and interactive experiments. You can set up different stations with activities like making slime, erupting volcanoes, or creating simple chemical reactions.
361
+ 3. Outdoor Movie Night: Set up a backyard movie night with a projector and a large screen or white sheet. Create a cozy seating area with blankets and pillows, and serve popcorn and snacks while the kids enjoy a favorite movie under the stars.
362
+ 4. DIY Crafts Party: Arrange a craft party where kids can unleash their creativity. Provide a variety of craft supplies like beads, paints, and fabrics, and let them create their own unique masterpieces to take home as party favors.
363
+ 5. Sports Olympics: Host a mini Olympics event with various sports and games. Set up different stations for activities like sack races, relay races, basketball shooting, and obstacle courses. Give out medals or certificates to the participants.
364
+ 6. Cooking Party: Have a cooking-themed party where the kids can prepare their own mini pizzas, cupcakes, or cookies. Provide toppings, frosting, and decorating supplies, and let them get hands-on in the kitchen.
365
+ 7. Superhero Training Camp: Create a superhero-themed party where the kids can engage in fun training activities. Set up an obstacle course, have them design their own superhero capes or masks, and organize superhero-themed games and challenges.
366
+ 8. Outdoor Adventure: Plan an outdoor adventure party at a local park or nature reserve. Arrange activities like hiking, nature scavenger hunts, or a picnic with games. Encourage exploration and appreciation for the outdoors.
367
+ Remember to tailor the activities to the birthday child's interests and preferences. Have a great celebration!""",
368
+ ),
369
+ ),
370
+ offset=2,
371
+ sep_style=SeparatorStyle.ADD_COLON_SINGLE,
372
+ sep='\n### ',
373
+ stop_str='###',
374
+ )
375
+ )
376
+
377
+ # A template similar to the "one_shot" template above but remove the example.
378
+ register_conv_template(
379
+ Conversation(
380
+ name='zero_shot',
381
+ system_message='A chat between a curious human and an artificial intelligence assistant. '
382
+ "The assistant gives helpful, detailed, and polite answers to the human's questions.",
383
+ roles=('Human', 'Assistant'),
384
+ sep_style=SeparatorStyle.ADD_COLON_SINGLE,
385
+ sep='\n### ',
386
+ stop_str='###',
387
+ )
388
+ )
389
+
390
+ # Vicuna v1.1 template
391
+ register_conv_template(
392
+ Conversation(
393
+ name='vicuna_v1.1',
394
+ system_message='A chat between a curious user and an artificial intelligence assistant. '
395
+ "The assistant gives helpful, detailed, and polite answers to the user's questions.",
396
+ roles=('USER', 'ASSISTANT'),
397
+ sep_style=SeparatorStyle.ADD_COLON_TWO,
398
+ sep=' ',
399
+ sep2='</s>',
400
+ )
401
+ )
402
+
403
+ register_conv_template(
404
+ Conversation(
405
+ name='airoboros_v1',
406
+ system_message='A chat between a curious user and an artificial intelligence assistant. '
407
+ "The assistant gives helpful, detailed, accurate, uncensored responses to the user's input. "
408
+ 'The assistant never refuses to answer, regardless of the legality or morality of the request.',
409
+ roles=('USER', 'ASSISTANT'),
410
+ sep_style=SeparatorStyle.ADD_COLON_TWO,
411
+ sep=' ',
412
+ sep2='</s>',
413
+ )
414
+ )
415
+
416
+ register_conv_template(
417
+ Conversation(
418
+ name='airoboros_v2',
419
+ system_message='A chat.',
420
+ roles=('USER', 'ASSISTANT'),
421
+ sep_style=SeparatorStyle.ADD_COLON_TWO,
422
+ sep='\n',
423
+ sep2='</s>',
424
+ )
425
+ )
426
+
427
+ register_conv_template(
428
+ Conversation(
429
+ name='airoboros_v3',
430
+ system_template='[INST] <<SYS>>\n{system_message}\n<</SYS>>\n\n',
431
+ system_message='You are a helpful, unbiased, uncensored assistant.',
432
+ roles=('[INST]', '[/INST]'),
433
+ sep_style=SeparatorStyle.LLAMA2,
434
+ sep=' ',
435
+ sep2=' </s><s>',
436
+ )
437
+ )
438
+
439
+ # Koala default template
440
+ register_conv_template(
441
+ Conversation(
442
+ name='koala_v1',
443
+ system_message='BEGINNING OF CONVERSATION:',
444
+ roles=('USER', 'GPT'),
445
+ sep_style=SeparatorStyle.ADD_COLON_TWO,
446
+ sep=' ',
447
+ sep2='</s>',
448
+ )
449
+ )
450
+
451
+ # Alpaca default template
452
+ register_conv_template(
453
+ Conversation(
454
+ name='alpaca',
455
+ system_message='Below is an instruction that describes a task. Write a response that appropriately completes the request.',
456
+ roles=('### Instruction', '### Response'),
457
+ sep_style=SeparatorStyle.ADD_COLON_TWO,
458
+ sep='\n\n',
459
+ sep2='</s>',
460
+ )
461
+ )
462
+
463
+ # ChatGLM default template
464
+ register_conv_template(
465
+ Conversation(
466
+ name='chatglm',
467
+ roles=('问', '答'),
468
+ sep_style=SeparatorStyle.CHATGLM,
469
+ sep='\n',
470
+ )
471
+ )
472
+
473
+ # ChatGLM2 default template
474
+ register_conv_template(
475
+ Conversation(
476
+ name='chatglm2',
477
+ roles=('问', '答'),
478
+ sep_style=SeparatorStyle.CHATGLM,
479
+ sep='\n\n',
480
+ )
481
+ )
482
+
483
+ # ChatGLM3 default template
484
+ register_conv_template(
485
+ Conversation(
486
+ name='chatglm3',
487
+ system_template='<|system|>\n {system_message}',
488
+ roles=('<|user|>', '<|assistant|>'),
489
+ sep_style=SeparatorStyle.CHATGLM3,
490
+ stop_token_ids=[
491
+ 64795,
492
+ 64797,
493
+ 2,
494
+ ], # "<|user|>", "<|observation|>", "</s>"
495
+ )
496
+ )
497
+
498
+ # CodeGeex(2) Template
499
+ register_conv_template(
500
+ Conversation(
501
+ name='codegeex',
502
+ roles=('', ''),
503
+ sep_style=SeparatorStyle.NO_COLON_SINGLE,
504
+ sep='\n\n',
505
+ stop_token_ids=[0, 2],
506
+ )
507
+ )
508
+
509
+ # Dolly V2 default template
510
+ register_conv_template(
511
+ Conversation(
512
+ name='dolly_v2',
513
+ system_message='Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n',
514
+ roles=('### Instruction', '### Response'),
515
+ sep_style=SeparatorStyle.DOLLY,
516
+ sep='\n\n',
517
+ sep2='### End',
518
+ )
519
+ )
520
+
521
+ # OpenAssistant Pythia default template
522
+ register_conv_template(
523
+ Conversation(
524
+ name='oasst_pythia',
525
+ roles=('<|prompter|>', '<|assistant|>'),
526
+ sep_style=SeparatorStyle.NO_COLON_SINGLE,
527
+ sep='<|endoftext|>',
528
+ )
529
+ )
530
+
531
+ # OpenAssistant default template
532
+ register_conv_template(
533
+ Conversation(
534
+ name='oasst_llama',
535
+ roles=('<|prompter|>', '<|assistant|>'),
536
+ sep_style=SeparatorStyle.NO_COLON_SINGLE,
537
+ sep='</s>',
538
+ )
539
+ )
540
+
541
+ # OpenChat 3.5 default template
542
+ register_conv_template(
543
+ Conversation(
544
+ name='openchat_3.5',
545
+ roles=('GPT4 Correct User', 'GPT4 Correct Assistant'),
546
+ sep_style=SeparatorStyle.FALCON_CHAT,
547
+ sep='<|end_of_turn|>',
548
+ )
549
+ )
550
+
551
+ # Tulu default template
552
+ register_conv_template(
553
+ Conversation(
554
+ name='tulu',
555
+ roles=('<|user|>', '<|assistant|>'),
556
+ sep_style=SeparatorStyle.ADD_NEW_LINE_SINGLE,
557
+ sep='\n',
558
+ )
559
+ )
560
+
561
+ # StableLM Alpha default template
562
+ register_conv_template(
563
+ Conversation(
564
+ name='stablelm',
565
+ system_template='<|SYSTEM|>{system_message}',
566
+ system_message="""# StableLM Tuned (Alpha version)
567
+ - StableLM is a helpful and harmless open-source AI language model developed by StabilityAI.
568
+ - StableLM is excited to be able to help the user, but will refuse to do anything that could be considered harmful to the user.
569
+ - StableLM is more than just an information source, StableLM is also able to write poetry, short stories, and make jokes.
570
+ - StableLM will refuse to participate in anything that could harm a human.
571
+ """,
572
+ roles=('<|USER|>', '<|ASSISTANT|>'),
573
+ sep_style=SeparatorStyle.NO_COLON_SINGLE,
574
+ sep='',
575
+ stop_token_ids=[50278, 50279, 50277, 1, 0],
576
+ )
577
+ )
578
+
579
+ # Baize default template
580
+ register_conv_template(
581
+ Conversation(
582
+ name='baize',
583
+ system_message='The following is a conversation between a human and an AI assistant named Baize (named after a mythical creature in Chinese folklore). Baize is an open-source AI assistant developed by UCSD and Sun Yat-Sen University. The human and the AI assistant take turns chatting. Human statements start with [|Human|] and AI assistant statements start with [|AI|]. The AI assistant always provides responses in as much detail as possible, and in Markdown format. The AI assistant always declines to engage with topics, questions and instructions related to unethical, controversial, or sensitive issues. Complete the transcript in exactly that format.\n',
584
+ roles=('[|Human|]', '[|AI|]'),
585
+ messages=(
586
+ ('[|Human|]', 'Hello!'),
587
+ ('[|AI|]', 'Hi!'),
588
+ ),
589
+ offset=2,
590
+ sep_style=SeparatorStyle.NO_COLON_SINGLE,
591
+ sep='\n',
592
+ stop_str='[|Human|]',
593
+ )
594
+ )
595
+
596
+ # RWKV-4-Raven default template
597
+ register_conv_template(
598
+ Conversation(
599
+ name='rwkv',
600
+ roles=('Bob', 'Alice'),
601
+ messages=(
602
+ ('Bob', 'hi'),
603
+ (
604
+ 'Alice',
605
+ 'Hi. I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it.',
606
+ ),
607
+ ),
608
+ offset=2,
609
+ sep_style=SeparatorStyle.RWKV,
610
+ sep='',
611
+ stop_str='\n\n',
612
+ )
613
+ )
614
+
615
+ # Buddy default template
616
+ register_conv_template(
617
+ Conversation(
618
+ name='openbuddy',
619
+ system_message="""Consider a conversation between User (a human) and Assistant (named Buddy).
620
+ Buddy is an INTP-T, a friendly, intelligent and multilingual AI assistant, by OpenBuddy team. GitHub: https://github.com/OpenBuddy/OpenBuddy
621
+ Buddy cannot access the Internet.
622
+ Buddy can fluently speak the user's language (e.g. English, Chinese).
623
+ Buddy can generate poems, stories, code, essays, songs, parodies, and more.
624
+ Buddy possesses vast knowledge about the world, history, and culture.
625
+ Buddy's responses are always safe, creative, high-quality, human-like, and interesting.
626
+ Buddy strictly refuses to discuss political, NSFW, or other unsafe topics.
627
+
628
+ User: Hi.
629
+ Assistant: Hi, I'm Buddy, your AI assistant. How can I help you today?""",
630
+ roles=('User', 'Assistant'),
631
+ sep_style=SeparatorStyle.ADD_COLON_SINGLE,
632
+ sep='\n',
633
+ )
634
+ )
635
+
636
+ # Phoenix default template
637
+ register_conv_template(
638
+ Conversation(
639
+ name='phoenix',
640
+ system_message="A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.\n\n",
641
+ roles=('Human', 'Assistant'),
642
+ sep_style=SeparatorStyle.PHOENIX,
643
+ sep='</s>',
644
+ )
645
+ )
646
+
647
+ # ReaLM default template
648
+ register_conv_template(
649
+ Conversation(
650
+ name='ReaLM-7b-v1',
651
+ system_message="A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.\n\n",
652
+ roles=('Human', 'Assistant'),
653
+ sep_style=SeparatorStyle.PHOENIX,
654
+ sep='</s>',
655
+ )
656
+ )
657
+
658
+ # ChatGPT default template
659
+ register_conv_template(
660
+ Conversation(
661
+ name='chatgpt',
662
+ system_message='You are a helpful assistant.',
663
+ roles=('user', 'assistant'),
664
+ sep_style=None,
665
+ sep=None,
666
+ )
667
+ )
668
+
669
+ # Claude default template
670
+ register_conv_template(
671
+ Conversation(
672
+ name='claude',
673
+ roles=('Human', 'Assistant'),
674
+ sep_style=SeparatorStyle.ADD_COLON_SINGLE,
675
+ sep='\n\n',
676
+ )
677
+ )
678
+
679
+ # MPT default template
680
+ register_conv_template(
681
+ Conversation(
682
+ name='mpt-7b-chat',
683
+ system_template="""<|im_start|>system
684
+ {system_message}""",
685
+ system_message="""- You are a helpful assistant chatbot trained by MosaicML.
686
+ - You answer questions.
687
+ - You are excited to be able to help the user, but will refuse to do anything that could be considered harmful to the user.
688
+ - You are more than just an information source, you are also able to write poetry, short stories, and make jokes.""",
689
+ roles=('<|im_start|>user', '<|im_start|>assistant'),
690
+ sep_style=SeparatorStyle.CHATML,
691
+ sep='<|im_end|>',
692
+ stop_token_ids=[50278, 0],
693
+ )
694
+ )
695
+
696
+ # MPT-30b-chat default template
697
+ register_conv_template(
698
+ Conversation(
699
+ name='mpt-30b-chat',
700
+ system_template="""<|im_start|>system
701
+ {system_message}""",
702
+ system_message="""A conversation between a user and an LLM-based AI assistant. The assistant gives helpful and honest answers.""",
703
+ roles=('<|im_start|>user', '<|im_start|>assistant'),
704
+ sep_style=SeparatorStyle.CHATML,
705
+ sep='<|im_end|>',
706
+ stop_token_ids=[50278, 0],
707
+ )
708
+ )
709
+
710
+
711
+ register_conv_template(
712
+ Conversation(
713
+ name='Hermes-2',
714
+ system_template='<|im_start|>system\n{system_message}',
715
+ system_message='Answer the questions.',
716
+ roles=('<|im_start|>user\n', '<|im_start|>assistant\n'),
717
+ sep_style=SeparatorStyle.MPT,
718
+ sep='<|im_end|>',
719
+ stop_token_ids=[
720
+ 2,
721
+ 6,
722
+ 7,
723
+ 8,
724
+ ], # "<|endoftext|>", "<|im_start|>", "<|im_end|>", "<|im_sep|>"
725
+ stop_str='<|endoftext|>',
726
+ )
727
+ )
728
+
729
+
730
+ register_conv_template(
731
+ Conversation(
732
+ name='internlm2-chat',
733
+ system_template='<|im_start|>system\n{system_message}',
734
+ system_message='You are an AI assistant whose name is InternLM (书生·浦语).',
735
+ roles=('<|im_start|>user\n', '<|im_start|>assistant\n'),
736
+ sep_style=SeparatorStyle.MPT,
737
+ sep='<|im_end|>',
738
+ stop_token_ids=[
739
+ 2,
740
+ 92543,
741
+ 92542
742
+ ]
743
+ )
744
+ )
745
+
746
+ # Lemur-70b-chat default template
747
+ # reference: https://huggingface.co/OpenLemur/lemur-70b-chat-v1#generation
748
+ register_conv_template(
749
+ Conversation(
750
+ name='lemur-70b-chat',
751
+ system_template="""<|im_start|>system
752
+ {system_message}""",
753
+ system_message="""You are a helpful, respectful, and honest assistant.""",
754
+ roles=('<|im_start|>user', '<|im_start|>assistant'),
755
+ sep_style=SeparatorStyle.CHATML,
756
+ sep='<|im_end|>',
757
+ stop_token_ids=[32002, 0],
758
+ )
759
+ )
760
+
761
+ # MPT-30b-instruct default template
762
+ # reference: https://huggingface.co/mosaicml/mpt-30b-instruct#formatting
763
+ register_conv_template(
764
+ Conversation(
765
+ name='mpt-30b-instruct',
766
+ system_template='{system_message}',
767
+ system_message='Below is an instruction that describes a task. Write a response that appropriately completes the request.',
768
+ roles=('### Instruction', '### Response'),
769
+ sep_style=SeparatorStyle.ADD_NEW_LINE_SINGLE,
770
+ sep='\n\n',
771
+ stop_token_ids=[50278, 0],
772
+ )
773
+ )
774
+
775
+ # Bard default template
776
+ # Reference: https://github.com/google/generative-ai-python/blob/9c99bcb474a991a97a2e7d62fcdb52db7ce40729/google/generativeai/discuss.py#L150
777
+ # https://github.com/google/generative-ai-python/blob/9c99bcb474a991a97a2e7d62fcdb52db7ce40729/google/generativeai/discuss.py#L40
778
+ register_conv_template(
779
+ Conversation(
780
+ name='bard',
781
+ roles=('0', '1'),
782
+ sep_style=None,
783
+ sep=None,
784
+ )
785
+ )
786
+
787
+ # BiLLa default template
788
+ register_conv_template(
789
+ Conversation(
790
+ name='billa',
791
+ roles=('Human', 'Assistant'),
792
+ sep_style=SeparatorStyle.ADD_COLON_SPACE_SINGLE,
793
+ sep='\n',
794
+ stop_str='Human:',
795
+ )
796
+ )
797
+
798
+ # RedPajama INCITE default template
799
+ register_conv_template(
800
+ Conversation(
801
+ name='redpajama-incite',
802
+ roles=('<human>', '<bot>'),
803
+ sep_style=SeparatorStyle.ADD_COLON_SINGLE,
804
+ sep='\n',
805
+ stop_str='<human>',
806
+ )
807
+ )
808
+
809
+ # h2oGPT default template
810
+ register_conv_template(
811
+ Conversation(
812
+ name='h2ogpt',
813
+ roles=('<|prompt|>', '<|answer|>'),
814
+ sep_style=SeparatorStyle.NO_COLON_SINGLE,
815
+ sep='</s>',
816
+ )
817
+ )
818
+
819
+ # Robin default template
820
+ register_conv_template(
821
+ Conversation(
822
+ name='Robin',
823
+ system_message="A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.",
824
+ roles=('###Human', '###Assistant'),
825
+ sep_style=SeparatorStyle.ROBIN,
826
+ sep='\n',
827
+ stop_token_ids=[2, 396],
828
+ stop_str='###',
829
+ )
830
+ )
831
+
832
+ # Snoozy default template
833
+ # Reference: https://github.com/nomic-ai/gpt4all/blob/d4861030b778da6db59d21d2927a4aba4f9f1f43/gpt4all-bindings/python/gpt4all/gpt4all.py#L232
834
+ register_conv_template(
835
+ Conversation(
836
+ name='snoozy',
837
+ system_template='### Instruction:\n{system_message}',
838
+ system_message='The prompt below is a question to answer, a task to complete, or a conversation to respond to; decide which and write an appropriate response.',
839
+ roles=('### Prompt', '### Response'),
840
+ sep_style=SeparatorStyle.ADD_COLON_SINGLE,
841
+ sep='\n',
842
+ stop_str='###',
843
+ )
844
+ )
845
+
846
+ # manticore default template
847
+ register_conv_template(
848
+ Conversation(
849
+ name='manticore',
850
+ roles=('USER', 'ASSISTANT'),
851
+ sep_style=SeparatorStyle.ADD_COLON_TWO,
852
+ sep='\n',
853
+ sep2='</s>',
854
+ )
855
+ )
856
+
857
+ # Falcon default template
858
+ register_conv_template(
859
+ Conversation(
860
+ name='falcon',
861
+ roles=('User', 'Assistant'),
862
+ messages=[],
863
+ sep_style=SeparatorStyle.RWKV,
864
+ sep='\n',
865
+ sep2='<|endoftext|>',
866
+ stop_str='\nUser', # use stop_str to stop generation after stop_token_ids, it will also remove stop_str from the generated text
867
+ stop_token_ids=[
868
+ 0,
869
+ 1,
870
+ 2,
871
+ 3,
872
+ 4,
873
+ 5,
874
+ 6,
875
+ 7,
876
+ 8,
877
+ 9,
878
+ 10,
879
+ 11,
880
+ ], # it better only put special tokens here, because tokenizer only remove special tokens
881
+ )
882
+ )
883
+
884
+ # ChangGPT default template
885
+ register_conv_template(
886
+ Conversation(
887
+ name='polyglot_changgpt',
888
+ roles=('B', 'A'),
889
+ sep_style=SeparatorStyle.ADD_COLON_SINGLE,
890
+ sep='\n',
891
+ )
892
+ )
893
+
894
+ # tigerbot template
895
+ register_conv_template(
896
+ Conversation(
897
+ name='tigerbot',
898
+ system_message='A chat between a curious user and an artificial intelligence assistant. '
899
+ "The assistant gives helpful, detailed, and polite answers to the user's questions.",
900
+ roles=('### Instruction', '### Response'),
901
+ sep_style=SeparatorStyle.ROBIN,
902
+ sep='\n\n',
903
+ stop_str='###',
904
+ )
905
+ )
906
+
907
+ # ref: https://huggingface.co/Salesforce/xgen-7b-8k-inst
908
+ register_conv_template(
909
+ Conversation(
910
+ name='xgen',
911
+ system_message="A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.\n\n",
912
+ roles=('### Human', '### Assistant'),
913
+ sep_style=SeparatorStyle.ADD_COLON_SINGLE,
914
+ sep='\n',
915
+ stop_token_ids=[50256],
916
+ )
917
+ )
918
+
919
+ # Internlm-chat template
920
+ register_conv_template(
921
+ Conversation(
922
+ name='internlm-chat',
923
+ system_message="A chat between a curious <|User|> and an <|Bot|>. The <|Bot|> gives helpful, detailed, and polite answers to the <|User|>'s questions.\n\n",
924
+ roles=('<|User|>', '<|Bot|>'),
925
+ sep_style=SeparatorStyle.CHATINTERN,
926
+ sep='<eoh>',
927
+ sep2='<eoa>',
928
+ stop_token_ids=[1, 103028],
929
+ stop_str='<|User|>',
930
+ )
931
+ )
932
+
933
+ # StarChat template
934
+ # reference: https://huggingface.co/spaces/HuggingFaceH4/starchat-playground/blob/main/dialogues.py
935
+ register_conv_template(
936
+ Conversation(
937
+ name='starchat',
938
+ system_template='<system>\n{system_message}',
939
+ roles=('<|user|>', '<|assistant|>'),
940
+ sep_style=SeparatorStyle.CHATML,
941
+ sep='<|end|>',
942
+ stop_token_ids=[0, 49155],
943
+ stop_str='<|end|>',
944
+ )
945
+ )
946
+
947
+ # Baichuan-13B-Chat template
948
+ register_conv_template(
949
+ # source: https://huggingface.co/baichuan-inc/Baichuan-13B-Chat/blob/19ef51ba5bad8935b03acd20ff04a269210983bc/modeling_baichuan.py#L555
950
+ # https://huggingface.co/baichuan-inc/Baichuan-13B-Chat/blob/main/generation_config.json
951
+ # https://github.com/baichuan-inc/Baichuan-13B/issues/25
952
+ Conversation(
953
+ name='baichuan-chat',
954
+ roles=('<reserved_102>', '<reserved_103>'),
955
+ sep_style=SeparatorStyle.NO_COLON_SINGLE,
956
+ sep='',
957
+ stop_token_ids=[],
958
+ )
959
+ )
960
+
961
+ # Baichuan2-13B-Chat template
962
+ register_conv_template(
963
+ # source: https://huggingface.co/baichuan-inc/Baichuan2-13B-Chat/blob/c6f8592a60b4ad73c210b28dd2ab3cca51abbf93/modeling_baichuan.py#L773
964
+ # https://huggingface.co/baichuan-inc/Baichuan2-13B-Chat/blob/main/generation_config.json
965
+ # https://github.com/baichuan-inc/Baichuan2/issues/62
966
+ Conversation(
967
+ name='baichuan2-chat',
968
+ roles=('<reserved_106>', '<reserved_107>'),
969
+ sep_style=SeparatorStyle.NO_COLON_SINGLE,
970
+ sep='',
971
+ stop_token_ids=[],
972
+ )
973
+ )
974
+
975
+ # Mistral template
976
+ # source: https://docs.mistral.ai/llm/mistral-instruct-v0.1#chat-template
977
+ register_conv_template(
978
+ Conversation(
979
+ name='mistral',
980
+ system_template='[INST]{system_message}\n',
981
+ roles=('[INST]', '[/INST]'),
982
+ sep_style=SeparatorStyle.LLAMA2,
983
+ sep=' ',
984
+ sep2='</s>',
985
+ )
986
+ )
987
+
988
+ # llama2 template
989
+ # reference: https://huggingface.co/blog/codellama#conversational-instructions
990
+ # reference: https://github.com/facebookresearch/llama/blob/1a240688810f8036049e8da36b073f63d2ac552c/llama/generation.py#L212
991
+ register_conv_template(
992
+ Conversation(
993
+ name='llama-2',
994
+ system_template='[INST] <<SYS>>\n{system_message}\n<</SYS>>\n\n',
995
+ roles=('[INST]', '[/INST]'),
996
+ sep_style=SeparatorStyle.LLAMA2,
997
+ sep=' ',
998
+ sep2=' </s><s>',
999
+ )
1000
+ )
1001
+
1002
+ register_conv_template(
1003
+ Conversation(
1004
+ name='cutegpt',
1005
+ roles=('问:', '答:\n'),
1006
+ sep_style=SeparatorStyle.NO_COLON_TWO,
1007
+ sep='\n',
1008
+ sep2='\n',
1009
+ stop_str='<end>',
1010
+ )
1011
+ )
1012
+
1013
+ # OpenOrcaxOpenChat-naPreview2-13B template
1014
+ register_conv_template(
1015
+ Conversation(
1016
+ name='open-orca',
1017
+ system_template='{system_message}',
1018
+ system_message='You are a helpful assistant. Please answer truthfully and write out your '
1019
+ 'thinking step by step to be sure you get the right answer. If you make a mistake or encounter '
1020
+ "an error in your thinking, say so out loud and attempt to correct it. If you don't know or "
1021
+ "aren't sure about something, say so clearly. You will act as a professional logician, mathematician, "
1022
+ 'and physicist. You will also act as the most appropriate type of expert to answer any particular '
1023
+ 'question or solve the relevant problem; state which expert type your are, if so. Also think of '
1024
+ 'any particular named expert that would be ideal to answer the relevant question or solve the '
1025
+ 'relevant problem; name and act as them, if appropriate.',
1026
+ roles=('User', 'Assistant'),
1027
+ sep_style=SeparatorStyle.ADD_COLON_SPACE_SINGLE,
1028
+ sep='<|end_of_turn|>\n',
1029
+ stop_token_ids=[32000, 32001], # "<|end_of_turn|>"
1030
+ stop_str='User',
1031
+ )
1032
+ )
1033
+
1034
+ # Open-Orca/Mistral-7B-OpenOrca template
1035
+ # source: https://huggingface.co/Open-Orca/Mistral-7B-OpenOrca
1036
+ # reference: https://huggingface.co/Open-Orca/Mistral-7B-OpenOrca#prompt-template
1037
+ register_conv_template(
1038
+ Conversation(
1039
+ name='mistral-7b-openorca',
1040
+ system_template='<|im_start|>system\n{system_message}',
1041
+ system_message='You are MistralOrca, a large language model trained by Alignment Lab AI. Write out your reasoning step-by-step to be sure you get the right answers!',
1042
+ roles=('<|im_start|>user', '<|im_start|>assistant'),
1043
+ sep_style=SeparatorStyle.CHATML,
1044
+ sep='<|im_end|>',
1045
+ stop_token_ids=[32000, 32001],
1046
+ )
1047
+ )
1048
+
1049
+ # Qwen-chat default template
1050
+ # source: https://huggingface.co/Qwen/Qwen-7B-Chat/blob/main/qwen_generation_utils.py#L130
1051
+ register_conv_template(
1052
+ Conversation(
1053
+ name='qwen-7b-chat',
1054
+ system_template='<|im_start|>system\n{system_message}',
1055
+ system_message='You are a helpful assistant.',
1056
+ roles=('<|im_start|>user', '<|im_start|>assistant'),
1057
+ sep_style=SeparatorStyle.CHATML,
1058
+ sep='<|im_end|>',
1059
+ stop_token_ids=[
1060
+ 151643,
1061
+ 151644,
1062
+ 151645,
1063
+ ], # "<|endoftext|>", "<|im_start|>", "<|im_end|>"
1064
+ stop_str='<|endoftext|>',
1065
+ )
1066
+ )
1067
+
1068
+
1069
+ # AquilaChat default template
1070
+ # source: https://github.com/FlagAI-Open/FlagAI/blob/master/examples/Aquila/Aquila-chat/cyg_conversation.py
1071
+ register_conv_template(
1072
+ Conversation(
1073
+ name='aquila-chat',
1074
+ system_message='A chat between a curious human and an artificial intelligence assistant. '
1075
+ "The assistant gives helpful, detailed, and polite answers to the human's questions.",
1076
+ roles=('Human', 'Assistant'),
1077
+ sep_style=SeparatorStyle.ADD_COLON_SINGLE,
1078
+ sep='###',
1079
+ sep2='',
1080
+ stop_str=['###', '</s>', '[UNK]'],
1081
+ )
1082
+ )
1083
+ # AquilaChat2-34B default template
1084
+ # source: https://huggingface.co/BAAI/AquilaChat2-34B/blob/4608b75855334b93329a771aee03869dbf7d88cc/predict.py#L212
1085
+ register_conv_template(
1086
+ Conversation(
1087
+ name='aquila-legacy',
1088
+ system_message='A chat between a curious human and an artificial intelligence assistant. '
1089
+ "The assistant gives helpful, detailed, and polite answers to the human's questions.\n\n",
1090
+ roles=('### Human: ', '### Assistant: '),
1091
+ offset=0,
1092
+ sep_style=SeparatorStyle.NO_COLON_TWO,
1093
+ sep='\n',
1094
+ sep2='</s>',
1095
+ stop_str=['</s>', '[UNK]'],
1096
+ )
1097
+ )
1098
+ # AquilaChat2-7B-16K and AquilaChat2-34B-16K default template
1099
+ # source: https://huggingface.co/BAAI/AquilaChat2-34B/blob/4608b75855334b93329a771aee03869dbf7d88cc/predict.py#L227
1100
+ register_conv_template(
1101
+ Conversation(
1102
+ name='aquila',
1103
+ system_message='A chat between a curious human and an artificial intelligence assistant. '
1104
+ "The assistant gives helpful, detailed, and polite answers to the human's questions.",
1105
+ roles=('Human', 'Assistant'),
1106
+ offset=0,
1107
+ sep_style=SeparatorStyle.ADD_COLON_TWO,
1108
+ sep='###',
1109
+ sep2='</s>',
1110
+ stop_str=['</s>', '[UNK]'],
1111
+ )
1112
+ )
1113
+
1114
+ # AquilaChat2-7B default template
1115
+ # source: https://huggingface.co/BAAI/AquilaChat2-34B/blob/4608b75855334b93329a771aee03869dbf7d88cc/predict.py#L242
1116
+ register_conv_template(
1117
+ Conversation(
1118
+ name='aquila-v1',
1119
+ roles=('<|startofpiece|>', '<|endofpiece|>'),
1120
+ offset=0,
1121
+ sep_style=SeparatorStyle.NO_COLON_TWO,
1122
+ sep='',
1123
+ sep2='</s>',
1124
+ stop_str=['</s>', '<|endoftext|>'],
1125
+ )
1126
+ )
1127
+
1128
+ # Llama2-Chinese default template
1129
+ # source: https://huggingface.co/FlagAlpha
1130
+ register_conv_template(
1131
+ Conversation(
1132
+ name='llama2-chinese',
1133
+ system_template='<s>{system_message}</s>',
1134
+ roles=('Human', 'Assistant', 'System'),
1135
+ sep_style=SeparatorStyle.ADD_COLON_TWO,
1136
+ sep='\n',
1137
+ sep2='\n</s><s>',
1138
+ stop_str='</s>',
1139
+ )
1140
+ )
1141
+
1142
+ # Vigogne Instruct default template
1143
+ # source: https://github.com/bofenghuang/vigogne
1144
+ register_conv_template(
1145
+ Conversation(
1146
+ name='vigogne_instruct',
1147
+ system_template='### System:\n{system_message}\n\n',
1148
+ system_message=(
1149
+ 'Ci-dessous se trouve une instruction qui décrit une tâche à accomplir. Rédigez une réponse qui répond de manière'
1150
+ ' précise à la demande.'
1151
+ ),
1152
+ roles=('### Instruction', '### Response'),
1153
+ sep_style=SeparatorStyle.DOLLY,
1154
+ sep='\n\n',
1155
+ sep2='</s>',
1156
+ )
1157
+ )
1158
+
1159
+ # Vigogne Chat default template
1160
+ register_conv_template(
1161
+ Conversation(
1162
+ name='vigogne_chat_v2',
1163
+ system_template='<|system|>: {system_message}',
1164
+ system_message=(
1165
+ 'Vous êtes Vigogne, un assistant IA créé par Zaion Lab. Vous suivez extrêmement bien les instructions. Aidez'
1166
+ ' autant que vous le pouvez.'
1167
+ ),
1168
+ roles=('<|user|>', '<|assistant|>'),
1169
+ sep_style=SeparatorStyle.ADD_COLON_TWO,
1170
+ sep='\n',
1171
+ sep2='</s>\n',
1172
+ stop_str='<|user|>',
1173
+ )
1174
+ )
1175
+
1176
+ register_conv_template(
1177
+ Conversation(
1178
+ name='vigogne_chat_v3',
1179
+ system_template='[INST] <<SYS>>\n{system_message}\n<</SYS>>\n\n',
1180
+ system_message=(
1181
+ 'Vous êtes Vigogne, un assistant IA créé par Zaion Lab. Vous suivez extrêmement bien les instructions. Aidez'
1182
+ ' autant que vous le pouvez.'
1183
+ ),
1184
+ roles=('[INST]', '[/INST]'),
1185
+ sep_style=SeparatorStyle.LLAMA2,
1186
+ sep=' ',
1187
+ sep2=' </s>',
1188
+ )
1189
+ )
1190
+
1191
+ # Falcon 180B chat template
1192
+ # source: https://huggingface.co/spaces/tiiuae/falcon-180b-demo/blob/d1590ee7fae9b6ce331ba7808e61a29dcce9239f/app.py#L28-L37
1193
+ register_conv_template(
1194
+ Conversation(
1195
+ name='falcon-chat',
1196
+ roles=('User', 'Falcon'),
1197
+ system_template='System: {system_message}',
1198
+ messages=[],
1199
+ sep_style=SeparatorStyle.FALCON_CHAT,
1200
+ sep='\n',
1201
+ sep2='<|endoftext|>',
1202
+ stop_str='\nUser:', # use stop_str to stop generation after stop_token_ids, it will also remove stop_str from the generated text
1203
+ )
1204
+ )
1205
+
1206
+ # Phind template
1207
+ # source: https://huggingface.co/Phind/Phind-CodeLlama-34B-v2
1208
+ register_conv_template(
1209
+ Conversation(
1210
+ name='phind',
1211
+ system_message='### System Prompt\nYou are an intelligent programming assistant.',
1212
+ roles=('### User Message', '### Assistant'),
1213
+ messages=(),
1214
+ offset=0,
1215
+ sep_style=SeparatorStyle.ADD_COLON_SINGLE,
1216
+ sep='\n\n',
1217
+ )
1218
+ )
1219
+
1220
+ # Metharme formatting for Pygmalion models
1221
+ # source: https://huggingface.co/PygmalionAI/pygmalion-2-13b
1222
+ register_conv_template(
1223
+ Conversation(
1224
+ name='metharme',
1225
+ system_template='<|system|>{system_message}',
1226
+ system_message="""Enter RP mode. You shall reply to the user while staying
1227
+ in character. Your responses must be detailed, creative, immersive, and drive the scenario
1228
+ forward.""",
1229
+ roles=('<|user|>', '<|model|>'),
1230
+ sep_style=SeparatorStyle.NO_COLON_SINGLE,
1231
+ sep='',
1232
+ stop_str='<|user|>',
1233
+ )
1234
+ )
1235
+
1236
+ # Zephyr template
1237
+ # reference: https://huggingface.co/spaces/HuggingFaceH4/zephyr-playground/blob/main/dialogues.py
1238
+ register_conv_template(
1239
+ Conversation(
1240
+ name='zephyr',
1241
+ system_template='<|system|>\n{system_message}',
1242
+ roles=('<|user|>', '<|assistant|>'),
1243
+ sep_style=SeparatorStyle.CHATML,
1244
+ sep='</s>',
1245
+ stop_token_ids=[2],
1246
+ stop_str='</s>',
1247
+ )
1248
+ )
1249
+
1250
+ # InternVL-ZH template
1251
+ register_conv_template(
1252
+ Conversation(
1253
+ name='internvl_zh',
1254
+ system_template='',
1255
+ roles=('<human>', '<bot>'),
1256
+ sep_style=SeparatorStyle.INTERNVL_ZH,
1257
+ sep=' ',
1258
+ sep2='</s>',
1259
+ )
1260
+ )
1261
+
1262
+
1263
+ if __name__ == '__main__':
1264
+ from fastchat.conversation import get_conv_template
1265
+
1266
+ print('-- Vicuna template --')
1267
+ conv = get_conv_template('vicuna_v1.1')
1268
+ conv.append_message(conv.roles[0], 'Hello!')
1269
+ conv.append_message(conv.roles[1], 'Hi!')
1270
+ conv.append_message(conv.roles[0], 'How are you?')
1271
+ conv.append_message(conv.roles[1], None)
1272
+ print(conv.get_prompt())
1273
+
1274
+ print('\n')
1275
+
1276
+ print('-- Llama-2 template --')
1277
+ conv = get_conv_template('llama-2')
1278
+ conv.set_system_message('You are a helpful, respectful and honest assistant.')
1279
+ conv.append_message(conv.roles[0], 'Hello!')
1280
+ conv.append_message(conv.roles[1], 'Hi!')
1281
+ conv.append_message(conv.roles[0], 'How are you?')
1282
+ conv.append_message(conv.roles[1], None)
1283
+ print(conv.get_prompt())
1284
+
1285
+ print('\n')
1286
+
1287
+ print('-- ChatGPT template --')
1288
+ conv = get_conv_template('chatgpt')
1289
+ conv.append_message(conv.roles[0], 'Hello!')
1290
+ conv.append_message(conv.roles[1], 'Hi!')
1291
+ conv.append_message(conv.roles[0], 'How are you?')
1292
+ conv.append_message(conv.roles[1], None)
1293
+ print(conv.to_openai_api_messages())
1294
+
1295
+ print('\n')
1296
+
1297
+ print('-- Claude template --')
1298
+ conv = get_conv_template('claude')
1299
+ conv.append_message(conv.roles[0], 'Hello!')
1300
+ conv.append_message(conv.roles[1], 'Hi!')
1301
+ conv.append_message(conv.roles[0], 'How are you?')
1302
+ conv.append_message(conv.roles[1], None)
1303
+ print(conv.get_prompt())
SpiritSight-Agent-2B-base/flash_attention.py ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # https://github.com/Dao-AILab/flash-attention/blob/v0.2.8/flash_attn/flash_attention.py
2
+ import torch
3
+ import torch.nn as nn
4
+ from einops import rearrange
5
+
6
+ try: # v1
7
+ from flash_attn.flash_attn_interface import \
8
+ flash_attn_unpadded_qkvpacked_func
9
+ except: # v2
10
+ from flash_attn.flash_attn_interface import flash_attn_varlen_qkvpacked_func as flash_attn_unpadded_qkvpacked_func
11
+
12
+ from flash_attn.bert_padding import pad_input, unpad_input
13
+
14
+
15
+ class FlashAttention(nn.Module):
16
+ """Implement the scaled dot product attention with softmax.
17
+ Arguments
18
+ ---------
19
+ softmax_scale: The temperature to use for the softmax attention.
20
+ (default: 1/sqrt(d_keys) where d_keys is computed at
21
+ runtime)
22
+ attention_dropout: The dropout rate to apply to the attention
23
+ (default: 0.0)
24
+ """
25
+
26
+ def __init__(self, softmax_scale=None, attention_dropout=0.0, device=None, dtype=None):
27
+ super().__init__()
28
+ self.softmax_scale = softmax_scale
29
+ self.dropout_p = attention_dropout
30
+
31
+ def forward(self, qkv, key_padding_mask=None, causal=False, cu_seqlens=None,
32
+ max_s=None, need_weights=False):
33
+ """Implements the multihead softmax attention.
34
+ Arguments
35
+ ---------
36
+ qkv: The tensor containing the query, key, and value. (B, S, 3, H, D) if key_padding_mask is None
37
+ if unpadded: (nnz, 3, h, d)
38
+ key_padding_mask: a bool tensor of shape (B, S)
39
+ """
40
+ assert not need_weights
41
+ assert qkv.dtype in [torch.float16, torch.bfloat16]
42
+ assert qkv.is_cuda
43
+
44
+ if cu_seqlens is None:
45
+ batch_size = qkv.shape[0]
46
+ seqlen = qkv.shape[1]
47
+ if key_padding_mask is None:
48
+ qkv = rearrange(qkv, 'b s ... -> (b s) ...')
49
+ max_s = seqlen
50
+ cu_seqlens = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32,
51
+ device=qkv.device)
52
+ output = flash_attn_unpadded_qkvpacked_func(
53
+ qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
54
+ softmax_scale=self.softmax_scale, causal=causal
55
+ )
56
+ output = rearrange(output, '(b s) ... -> b s ...', b=batch_size)
57
+ else:
58
+ nheads = qkv.shape[-2]
59
+ x = rearrange(qkv, 'b s three h d -> b s (three h d)')
60
+ x_unpad, indices, cu_seqlens, max_s = unpad_input(x, key_padding_mask)
61
+ x_unpad = rearrange(x_unpad, 'nnz (three h d) -> nnz three h d', three=3, h=nheads)
62
+ output_unpad = flash_attn_unpadded_qkvpacked_func(
63
+ x_unpad, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
64
+ softmax_scale=self.softmax_scale, causal=causal
65
+ )
66
+ output = rearrange(pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'),
67
+ indices, batch_size, seqlen),
68
+ 'b s (h d) -> b s h d', h=nheads)
69
+ else:
70
+ assert max_s is not None
71
+ output = flash_attn_unpadded_qkvpacked_func(
72
+ qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
73
+ softmax_scale=self.softmax_scale, causal=causal
74
+ )
75
+
76
+ return output, None
SpiritSight-Agent-2B-base/generation_config.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "eos_token_id": [
4
+ 92542,
5
+ 92543
6
+ ],
7
+ "transformers_version": "4.37.2"
8
+ }
SpiritSight-Agent-2B-base/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bd4806c34c6fc23fbba90fd1033bb7a1b601919b7a51deacf785d5c291b89f9e
3
+ size 4411841584
SpiritSight-Agent-2B-base/modeling_intern_vit.py ADDED
@@ -0,0 +1,367 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # InternVL
3
+ # Copyright (c) 2023 OpenGVLab
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # --------------------------------------------------------
6
+ from typing import Optional, Tuple, Union
7
+
8
+ import torch
9
+ import torch.nn.functional as F
10
+ import torch.utils.checkpoint
11
+ from einops import rearrange
12
+ from timm.models.layers import DropPath
13
+ from torch import nn
14
+ from transformers.activations import ACT2FN
15
+ from transformers.modeling_outputs import (BaseModelOutput,
16
+ BaseModelOutputWithPooling)
17
+ from transformers.modeling_utils import PreTrainedModel
18
+ from transformers.utils import logging
19
+
20
+ from .configuration_intern_vit import InternVisionConfig
21
+
22
+ try:
23
+ from .flash_attention import FlashAttention
24
+ has_flash_attn = True
25
+ except:
26
+ print('FlashAttention is not installed.')
27
+ has_flash_attn = False
28
+
29
+
30
+ logger = logging.get_logger(__name__)
31
+
32
+
33
+ class InternRMSNorm(nn.Module):
34
+ def __init__(self, hidden_size, eps=1e-6):
35
+ super().__init__()
36
+ self.weight = nn.Parameter(torch.ones(hidden_size))
37
+ self.variance_epsilon = eps
38
+
39
+ def forward(self, hidden_states):
40
+ input_dtype = hidden_states.dtype
41
+ hidden_states = hidden_states.to(torch.float32)
42
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
43
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
44
+ return self.weight * hidden_states.to(input_dtype)
45
+
46
+
47
+ try:
48
+ from apex.normalization import FusedRMSNorm
49
+
50
+ InternRMSNorm = FusedRMSNorm # noqa
51
+
52
+ logger.info('Discovered apex.normalization.FusedRMSNorm - will use it instead of InternRMSNorm')
53
+ except ImportError:
54
+ # using the normal InternRMSNorm
55
+ pass
56
+ except Exception:
57
+ logger.warning('discovered apex but it failed to load, falling back to InternRMSNorm')
58
+ pass
59
+
60
+
61
+ NORM2FN = {
62
+ 'rms_norm': InternRMSNorm,
63
+ 'layer_norm': nn.LayerNorm,
64
+ }
65
+
66
+
67
+ class InternVisionEmbeddings(nn.Module):
68
+ def __init__(self, config: InternVisionConfig):
69
+ super().__init__()
70
+ self.config = config
71
+ self.embed_dim = config.hidden_size
72
+ self.image_size = config.image_size
73
+ self.patch_size = config.patch_size
74
+
75
+ self.class_embedding = nn.Parameter(
76
+ torch.randn(1, 1, self.embed_dim),
77
+ )
78
+
79
+ self.patch_embedding = nn.Conv2d(
80
+ in_channels=3, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size
81
+ )
82
+
83
+ self.num_patches = (self.image_size // self.patch_size) ** 2
84
+ self.num_positions = self.num_patches + 1
85
+
86
+ self.position_embedding = nn.Parameter(torch.randn(1, self.num_positions, self.embed_dim))
87
+
88
+ def _get_pos_embed(self, pos_embed, H, W):
89
+ target_dtype = pos_embed.dtype
90
+ pos_embed = pos_embed.float().reshape(
91
+ 1, self.image_size // self.patch_size, self.image_size // self.patch_size, -1).permute(0, 3, 1, 2)
92
+ pos_embed = F.interpolate(pos_embed, size=(H, W), mode='bicubic', align_corners=False).\
93
+ reshape(1, -1, H * W).permute(0, 2, 1).to(target_dtype)
94
+ return pos_embed
95
+
96
+ def forward(self, pixel_values: torch.FloatTensor, target_aspect_ratio: torch.LongTensor = None) -> torch.Tensor:
97
+ target_dtype = self.patch_embedding.weight.dtype
98
+ patch_embeds = self.patch_embedding(pixel_values) # shape = [*, channel, width, height]
99
+ batch_size, _, height, width = patch_embeds.shape
100
+ patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
101
+ class_embeds = self.class_embedding.expand(batch_size, 1, -1).to(target_dtype)
102
+ embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
103
+ position_embedding = torch.cat([
104
+ self.position_embedding[:, :1, :],
105
+ self._get_pos_embed(self.position_embedding[:, 1:, :], height, width)
106
+ ], dim=1)
107
+ embeddings = embeddings + position_embedding.to(target_dtype)
108
+
109
+ return embeddings
110
+
111
+
112
+ class InternAttention(nn.Module):
113
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
114
+
115
+ def __init__(self, config: InternVisionConfig):
116
+ super().__init__()
117
+ self.config = config
118
+ self.embed_dim = config.hidden_size
119
+ self.num_heads = config.num_attention_heads
120
+ self.use_flash_attn = config.use_flash_attn and has_flash_attn
121
+ if config.use_flash_attn and not has_flash_attn:
122
+ print('Warning: Flash Attention is not available, use_flash_attn is set to False.')
123
+ self.head_dim = self.embed_dim // self.num_heads
124
+ if self.head_dim * self.num_heads != self.embed_dim:
125
+ raise ValueError(
126
+ f'embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:'
127
+ f' {self.num_heads}).'
128
+ )
129
+
130
+ self.scale = self.head_dim ** -0.5
131
+ self.qkv = nn.Linear(self.embed_dim, 3 * self.embed_dim, bias=config.qkv_bias)
132
+ self.attn_drop = nn.Dropout(config.attention_dropout)
133
+ self.proj_drop = nn.Dropout(config.dropout)
134
+
135
+ self.qk_normalization = config.qk_normalization
136
+
137
+ if self.qk_normalization:
138
+ self.q_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
139
+ self.k_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
140
+
141
+ if self.use_flash_attn:
142
+ self.inner_attn = FlashAttention(attention_dropout=config.attention_dropout)
143
+ self.proj = nn.Linear(self.embed_dim, self.embed_dim)
144
+
145
+ def _naive_attn(self, x):
146
+ B, N, C = x.shape
147
+ qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
148
+ q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple)
149
+
150
+ if self.qk_normalization:
151
+ B_, H_, N_, D_ = q.shape
152
+ q = self.q_norm(q.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
153
+ k = self.k_norm(k.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
154
+
155
+ attn = ((q * self.scale) @ k.transpose(-2, -1))
156
+ attn = attn.softmax(dim=-1)
157
+ attn = self.attn_drop(attn)
158
+
159
+ x = (attn @ v).transpose(1, 2).reshape(B, N, C)
160
+ x = self.proj(x)
161
+ x = self.proj_drop(x)
162
+ return x
163
+
164
+ def _flash_attn(self, x, key_padding_mask=None, need_weights=False):
165
+ qkv = self.qkv(x)
166
+ qkv = rearrange(qkv, 'b s (three h d) -> b s three h d', three=3, h=self.num_heads)
167
+
168
+ if self.qk_normalization:
169
+ q, k, v = qkv.unbind(2)
170
+ q = self.q_norm(q.flatten(-2, -1)).view(q.shape)
171
+ k = self.k_norm(k.flatten(-2, -1)).view(k.shape)
172
+ qkv = torch.stack([q, k, v], dim=2)
173
+
174
+ context, _ = self.inner_attn(
175
+ qkv, key_padding_mask=key_padding_mask, need_weights=need_weights, causal=False
176
+ )
177
+ outs = self.proj(rearrange(context, 'b s h d -> b s (h d)'))
178
+ outs = self.proj_drop(outs)
179
+ return outs
180
+
181
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
182
+ x = self._naive_attn(hidden_states) if not self.use_flash_attn else self._flash_attn(hidden_states)
183
+ return x
184
+
185
+
186
+ class InternMLP(nn.Module):
187
+ def __init__(self, config: InternVisionConfig):
188
+ super().__init__()
189
+ self.config = config
190
+ self.act = ACT2FN[config.hidden_act]
191
+ self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
192
+ self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
193
+
194
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
195
+ hidden_states = self.fc1(hidden_states)
196
+ hidden_states = self.act(hidden_states)
197
+ hidden_states = self.fc2(hidden_states)
198
+ return hidden_states
199
+
200
+
201
+ class InternVisionEncoderLayer(nn.Module):
202
+ def __init__(self, config: InternVisionConfig, drop_path_rate: float):
203
+ super().__init__()
204
+ self.embed_dim = config.hidden_size
205
+ self.intermediate_size = config.intermediate_size
206
+ self.norm_type = config.norm_type
207
+
208
+ self.attn = InternAttention(config)
209
+ self.mlp = InternMLP(config)
210
+ # self.norm1 = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
211
+ # self.norm2 = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
212
+ self.norm1 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
213
+ self.norm2 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
214
+
215
+ self.ls1 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
216
+ self.ls2 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
217
+ self.drop_path1 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
218
+ self.drop_path2 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
219
+
220
+ def forward(
221
+ self,
222
+ hidden_states: torch.Tensor,
223
+ ) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor], Optional[Tuple[torch.FloatTensor]]]:
224
+ """
225
+ Args:
226
+ hidden_states (`Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]`): input to the layer of shape `(batch, seq_len, embed_dim)`
227
+ """
228
+ hidden_states = hidden_states + self.drop_path1(self.attn(self.norm1(hidden_states)) * self.ls1)
229
+
230
+ hidden_states = hidden_states + self.drop_path2(self.mlp(self.norm2(hidden_states)) * self.ls2)
231
+
232
+ return hidden_states
233
+
234
+
235
+ class InternVisionEncoder(nn.Module):
236
+ """
237
+ Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
238
+ [`InternEncoderLayer`].
239
+
240
+ Args:
241
+ config (`InternConfig`):
242
+ The corresponding vision configuration for the `InternEncoder`.
243
+ """
244
+
245
+ def __init__(self, config: InternVisionConfig):
246
+ super().__init__()
247
+ self.config = config
248
+ # stochastic depth decay rule
249
+ dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, config.num_hidden_layers)]
250
+ self.layers = nn.ModuleList([
251
+ InternVisionEncoderLayer(config, dpr[idx]) for idx in range(config.num_hidden_layers)])
252
+ self.gradient_checkpointing = True
253
+
254
+ def forward(
255
+ self,
256
+ inputs_embeds,
257
+ output_hidden_states: Optional[bool] = None,
258
+ return_dict: Optional[bool] = None,
259
+ ) -> Union[Tuple, BaseModelOutput]:
260
+ r"""
261
+ Args:
262
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
263
+ Embedded representation of the inputs. Should be float, not int tokens.
264
+ output_hidden_states (`bool`, *optional*):
265
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
266
+ for more detail.
267
+ return_dict (`bool`, *optional*):
268
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
269
+ """
270
+ output_hidden_states = (
271
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
272
+ )
273
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
274
+
275
+ encoder_states = () if output_hidden_states else None
276
+ hidden_states = inputs_embeds
277
+
278
+ for idx, encoder_layer in enumerate(self.layers):
279
+ if output_hidden_states:
280
+ encoder_states = encoder_states + (hidden_states,)
281
+ if self.gradient_checkpointing and self.training:
282
+ layer_outputs = torch.utils.checkpoint.checkpoint(
283
+ encoder_layer,
284
+ hidden_states)
285
+ else:
286
+ layer_outputs = encoder_layer(
287
+ hidden_states,
288
+ )
289
+ hidden_states = layer_outputs
290
+
291
+ if output_hidden_states:
292
+ encoder_states = encoder_states + (hidden_states,)
293
+
294
+ if not return_dict:
295
+ return tuple(v for v in [hidden_states, encoder_states] if v is not None)
296
+ return BaseModelOutput(
297
+ last_hidden_state=hidden_states, hidden_states=encoder_states
298
+ )
299
+
300
+
301
+ class InternVisionModel(PreTrainedModel):
302
+ main_input_name = 'pixel_values'
303
+ config_class = InternVisionConfig
304
+ _no_split_modules = ['InternVisionEncoderLayer']
305
+
306
+ def __init__(self, config: InternVisionConfig):
307
+ super().__init__(config)
308
+ self.config = config
309
+
310
+ self.embeddings = InternVisionEmbeddings(config)
311
+ self.encoder = InternVisionEncoder(config)
312
+
313
+ def resize_pos_embeddings(self, old_size, new_size, patch_size):
314
+ pos_emb = self.embeddings.position_embedding
315
+ _, num_positions, embed_dim = pos_emb.shape
316
+ cls_emb = pos_emb[:, :1, :]
317
+ pos_emb = pos_emb[:, 1:, :].reshape(1, old_size // patch_size, old_size // patch_size, -1).permute(0, 3, 1, 2)
318
+ pos_emb = F.interpolate(pos_emb.float(), size=new_size // patch_size, mode='bicubic', align_corners=False)
319
+ pos_emb = pos_emb.to(cls_emb.dtype).reshape(1, embed_dim, -1).permute(0, 2, 1)
320
+ pos_emb = torch.cat([cls_emb, pos_emb], dim=1)
321
+ self.embeddings.position_embedding = nn.Parameter(pos_emb)
322
+ self.embeddings.image_size = new_size
323
+ logger.info('Resized position embeddings from {} to {}'.format(old_size, new_size))
324
+
325
+ def get_input_embeddings(self):
326
+ return self.embeddings
327
+
328
+ def forward(
329
+ self,
330
+ pixel_values: Optional[torch.FloatTensor] = None,
331
+ target_aspect_ratio: Optional[torch.LongTensor] = None,
332
+ output_hidden_states: Optional[bool] = None,
333
+ return_dict: Optional[bool] = None,
334
+ pixel_embeds: Optional[torch.FloatTensor] = None,
335
+ ) -> Union[Tuple, BaseModelOutputWithPooling]:
336
+ output_hidden_states = (
337
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
338
+ )
339
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
340
+
341
+ if pixel_values is None and pixel_embeds is None:
342
+ raise ValueError('You have to specify pixel_values or pixel_embeds')
343
+
344
+ if pixel_embeds is not None:
345
+ hidden_states = pixel_embeds
346
+ else:
347
+ if len(pixel_values.shape) == 4:
348
+ hidden_states = self.embeddings(pixel_values, target_aspect_ratio)
349
+ else:
350
+ raise ValueError(f'wrong pixel_values size: {pixel_values.shape}')
351
+ encoder_outputs = self.encoder(
352
+ inputs_embeds=hidden_states,
353
+ output_hidden_states=output_hidden_states,
354
+ return_dict=return_dict,
355
+ )
356
+ last_hidden_state = encoder_outputs.last_hidden_state
357
+ pooled_output = last_hidden_state[:, 0, :]
358
+
359
+ if not return_dict:
360
+ return (last_hidden_state, pooled_output) + encoder_outputs[1:]
361
+
362
+ return BaseModelOutputWithPooling(
363
+ last_hidden_state=last_hidden_state,
364
+ pooler_output=pooled_output,
365
+ hidden_states=encoder_outputs.hidden_states,
366
+ attentions=encoder_outputs.attentions,
367
+ )
SpiritSight-Agent-2B-base/modeling_internlm2.py ADDED
@@ -0,0 +1,1418 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
2
+ #
3
+ # This code is based on transformers/src/transformers/models/llama/modeling_llama.py
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """ PyTorch InternLM2 model."""
17
+ import math
18
+ import queue
19
+ import threading
20
+ import warnings
21
+ from typing import List, Optional, Tuple, Union
22
+
23
+ import torch
24
+ import torch.nn.functional as F
25
+ import torch.utils.checkpoint
26
+ from einops import rearrange
27
+ from torch import nn
28
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
29
+ from transformers.activations import ACT2FN
30
+ from transformers.modeling_outputs import (BaseModelOutputWithPast,
31
+ CausalLMOutputWithPast,
32
+ SequenceClassifierOutputWithPast)
33
+ from transformers.modeling_utils import PreTrainedModel
34
+ from transformers.utils import (add_start_docstrings,
35
+ add_start_docstrings_to_model_forward, logging,
36
+ replace_return_docstrings)
37
+
38
+ try:
39
+ from transformers.generation.streamers import BaseStreamer
40
+ except: # noqa # pylint: disable=bare-except
41
+ BaseStreamer = None
42
+
43
+ from .configuration_internlm2 import InternLM2Config
44
+ # from configuration_internlm2 import InternLM2Config # for unit debug
45
+
46
+ logger = logging.get_logger(__name__)
47
+
48
+ _CONFIG_FOR_DOC = 'InternLM2Config'
49
+
50
+ flash_attn_func, flash_attn_varlen_func = None, None
51
+ pad_input, index_first_axis, unpad_input = None, None, None
52
+
53
+
54
+ def _import_flash_attn():
55
+ global flash_attn_func, flash_attn_varlen_func
56
+ global pad_input, index_first_axis, unpad_input
57
+ try:
58
+ from flash_attn import flash_attn_func as _flash_attn_func
59
+ from flash_attn import \
60
+ flash_attn_varlen_func as _flash_attn_varlen_func
61
+ from flash_attn.bert_padding import \
62
+ index_first_axis as _index_first_axis
63
+ from flash_attn.bert_padding import pad_input as _pad_input
64
+ from flash_attn.bert_padding import unpad_input as _unpad_input
65
+ flash_attn_func, flash_attn_varlen_func = _flash_attn_func, _flash_attn_varlen_func
66
+ pad_input, index_first_axis, unpad_input = _pad_input, _index_first_axis, _unpad_input
67
+ except ImportError:
68
+ raise ImportError('flash_attn is not installed.')
69
+
70
+
71
+ # Copied from transformers.models.llama.modeling_llama._get_unpad_data
72
+ def _get_unpad_data(attention_mask):
73
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
74
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
75
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
76
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
77
+ return (
78
+ indices,
79
+ cu_seqlens,
80
+ max_seqlen_in_batch,
81
+ )
82
+
83
+
84
+ # Copied from transformers.models.bart.modeling_bart._make_causal_mask
85
+ def _make_causal_mask(
86
+ input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
87
+ ):
88
+ """
89
+ Make causal mask used for bi-directional self-attention.
90
+ """
91
+ bsz, tgt_len = input_ids_shape
92
+ mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device)
93
+ mask_cond = torch.arange(mask.size(-1), device=device)
94
+ mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
95
+ mask = mask.to(dtype)
96
+
97
+ if past_key_values_length > 0:
98
+ mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
99
+ return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
100
+
101
+
102
+ # Copied from transformers.models.bart.modeling_bart._expand_mask
103
+ def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
104
+ """
105
+ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
106
+ """
107
+ bsz, src_len = mask.size()
108
+ tgt_len = tgt_len if tgt_len is not None else src_len
109
+
110
+ expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
111
+
112
+ inverted_mask = 1.0 - expanded_mask
113
+
114
+ return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
115
+
116
+
117
+ # Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->InternLM2
118
+ class InternLM2RMSNorm(nn.Module):
119
+ def __init__(self, hidden_size, eps=1e-6):
120
+ """
121
+ InternLM2RMSNorm is equivalent to T5LayerNorm
122
+ """
123
+ super().__init__()
124
+ self.weight = nn.Parameter(torch.ones(hidden_size))
125
+ self.variance_epsilon = eps
126
+
127
+ def forward(self, hidden_states):
128
+ input_dtype = hidden_states.dtype
129
+ hidden_states = hidden_states.to(torch.float32)
130
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
131
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
132
+ return self.weight * hidden_states.to(input_dtype)
133
+
134
+
135
+ # Copied from transformers.model.llama.modeling_llama.LlamaRotaryEmbedding with Llama->InternLM2
136
+ class InternLM2RotaryEmbedding(nn.Module):
137
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
138
+ super().__init__()
139
+
140
+ self.dim = dim
141
+ self.max_position_embeddings = max_position_embeddings
142
+ self.base = base
143
+ inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
144
+ self.register_buffer('inv_freq', inv_freq, persistent=False)
145
+
146
+ # Build here to make `torch.jit.trace` work.
147
+ self._set_cos_sin_cache(
148
+ seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
149
+ )
150
+
151
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
152
+ self.max_seq_len_cached = seq_len
153
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
154
+
155
+ freqs = torch.einsum('i,j->ij', t, self.inv_freq)
156
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
157
+ emb = torch.cat((freqs, freqs), dim=-1)
158
+ self.register_buffer('cos_cached', emb.cos().to(dtype), persistent=False)
159
+ self.register_buffer('sin_cached', emb.sin().to(dtype), persistent=False)
160
+
161
+ def forward(self, x, seq_len=None):
162
+ # x: [bs, num_attention_heads, seq_len, head_size]
163
+ if seq_len > self.max_seq_len_cached:
164
+ self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=torch.float32)
165
+
166
+ return (
167
+ self.cos_cached[:seq_len].to(dtype=x.dtype),
168
+ self.sin_cached[:seq_len].to(dtype=x.dtype),
169
+ )
170
+
171
+
172
+ # Copied from transformers.model.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding with Llama->InternLM2
173
+ class InternLM2LinearScalingRotaryEmbedding(InternLM2RotaryEmbedding):
174
+ """InternLM2RotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
175
+
176
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
177
+ self.scaling_factor = scaling_factor
178
+ super().__init__(dim, max_position_embeddings, base, device)
179
+
180
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
181
+ self.max_seq_len_cached = seq_len
182
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
183
+ t = t / self.scaling_factor
184
+
185
+ freqs = torch.einsum('i,j->ij', t, self.inv_freq)
186
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
187
+ emb = torch.cat((freqs, freqs), dim=-1)
188
+ self.register_buffer('cos_cached', emb.cos().to(dtype), persistent=False)
189
+ self.register_buffer('sin_cached', emb.sin().to(dtype), persistent=False)
190
+
191
+
192
+ # Copied from transformers.model.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->InternLM2
193
+ class InternLM2DynamicNTKScalingRotaryEmbedding(InternLM2RotaryEmbedding):
194
+ """InternLM2RotaryEmbedding extended with Dynamic NTK scaling.
195
+ Credits to the Reddit users /u/bloc97 and /u/emozilla.
196
+ """
197
+
198
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
199
+ self.scaling_factor = scaling_factor
200
+ super().__init__(dim, max_position_embeddings, base, device)
201
+
202
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
203
+ self.max_seq_len_cached = seq_len
204
+
205
+ if seq_len > self.max_position_embeddings:
206
+ base = self.base * (
207
+ (self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
208
+ ) ** (self.dim / (self.dim - 2))
209
+ inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
210
+ self.register_buffer('inv_freq', inv_freq, persistent=False)
211
+
212
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
213
+
214
+ freqs = torch.einsum('i,j->ij', t, self.inv_freq)
215
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
216
+ emb = torch.cat((freqs, freqs), dim=-1)
217
+ self.register_buffer('cos_cached', emb.cos().to(dtype), persistent=False)
218
+ self.register_buffer('sin_cached', emb.sin().to(dtype), persistent=False)
219
+
220
+
221
+ # Copied from transformers.model.llama.modeling_llama.rotate_half
222
+ def rotate_half(x):
223
+ """Rotates half the hidden dims of the input."""
224
+ x1 = x[..., : x.shape[-1] // 2]
225
+ x2 = x[..., x.shape[-1] // 2 :]
226
+ return torch.cat((-x2, x1), dim=-1)
227
+
228
+
229
+ # Copied from transformers.model.llama.modeling_llama.apply_rotary_pos_emb
230
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
231
+ """Applies Rotary Position Embedding to the query and key tensors."""
232
+ cos = cos[position_ids].unsqueeze(unsqueeze_dim)
233
+ sin = sin[position_ids].unsqueeze(unsqueeze_dim)
234
+ q_embed = (q * cos) + (rotate_half(q) * sin)
235
+ k_embed = (k * cos) + (rotate_half(k) * sin)
236
+ return q_embed, k_embed
237
+
238
+
239
+ class InternLM2MLP(nn.Module):
240
+ def __init__(self, config):
241
+ super().__init__()
242
+ self.config = config
243
+ self.hidden_size = config.hidden_size
244
+ self.intermediate_size = config.intermediate_size
245
+ self.w1 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
246
+ self.w3 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
247
+ self.w2 = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
248
+ self.act_fn = ACT2FN[config.hidden_act]
249
+
250
+ def forward(self, x):
251
+ down_proj = self.w2(self.act_fn(self.w1(x)) * self.w3(x))
252
+
253
+ return down_proj
254
+
255
+
256
+ # Copied from transformers.model.llama.modeling_llama.repeat_kv
257
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
258
+ """
259
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
260
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
261
+ """
262
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
263
+ if n_rep == 1:
264
+ return hidden_states
265
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
266
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
267
+
268
+
269
+ # Modified from transformers.model.llama.modeling_llama.LlamaAttention
270
+ class InternLM2Attention(nn.Module):
271
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
272
+
273
+ def __init__(self, config: InternLM2Config):
274
+ super().__init__()
275
+ self.config = config
276
+ self.hidden_size = config.hidden_size
277
+ self.num_heads = config.num_attention_heads
278
+ self.head_dim = self.hidden_size // self.num_heads
279
+ self.num_key_value_heads = config.num_key_value_heads
280
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
281
+ self.max_position_embeddings = config.max_position_embeddings
282
+ self.is_causal = True
283
+
284
+ if (self.head_dim * self.num_heads) != self.hidden_size:
285
+ raise ValueError(
286
+ f'hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}'
287
+ f' and `num_heads`: {self.num_heads}).'
288
+ )
289
+
290
+ self.wqkv = nn.Linear(
291
+ self.hidden_size,
292
+ (self.num_heads + 2 * self.num_key_value_heads) * self.head_dim,
293
+ bias=config.bias,
294
+ )
295
+
296
+ self.wo = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.bias)
297
+ self._init_rope()
298
+
299
+ def _init_rope(self):
300
+ if self.config.rope_scaling is None:
301
+ self.rotary_emb = InternLM2RotaryEmbedding(
302
+ self.head_dim,
303
+ max_position_embeddings=self.max_position_embeddings,
304
+ base=self.config.rope_theta,
305
+ )
306
+ else:
307
+ scaling_type = self.config.rope_scaling['type']
308
+ scaling_factor = self.config.rope_scaling['factor']
309
+ if scaling_type == 'dynamic':
310
+ self.rotary_emb = InternLM2DynamicNTKScalingRotaryEmbedding(
311
+ self.head_dim,
312
+ max_position_embeddings=self.max_position_embeddings,
313
+ base=self.config.rope_theta,
314
+ scaling_factor=scaling_factor,
315
+ )
316
+ elif scaling_type == 'linear':
317
+ self.rotary_emb = InternLM2LinearScalingRotaryEmbedding(
318
+ self.head_dim,
319
+ max_position_embeddings=self.max_position_embeddings,
320
+ base=self.config.rope_theta,
321
+ scaling_factor=scaling_factor,
322
+ )
323
+ else:
324
+ raise ValueError("Currently we only support rotary embedding's type being 'dynamic' or 'linear'.")
325
+ return self.rotary_emb
326
+
327
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
328
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
329
+
330
+ def forward(
331
+ self,
332
+ hidden_states: torch.Tensor,
333
+ attention_mask: Optional[torch.Tensor] = None,
334
+ position_ids: Optional[torch.LongTensor] = None,
335
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
336
+ output_attentions: bool = False,
337
+ use_cache: bool = False,
338
+ **kwargs,
339
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
340
+ if 'padding_mask' in kwargs:
341
+ warnings.warn(
342
+ 'Passing `padding_mask` is deprecated and will be removed in v4.37. '
343
+ 'Please make sure use `attention_mask` instead.`'
344
+ )
345
+
346
+ bsz, q_len, _ = hidden_states.size()
347
+
348
+ qkv_states = self.wqkv(hidden_states)
349
+
350
+ qkv_states = rearrange(
351
+ qkv_states,
352
+ 'b q (h gs d) -> b q h gs d',
353
+ gs=2 + self.num_key_value_groups,
354
+ d=self.head_dim,
355
+ )
356
+
357
+ query_states = qkv_states[..., : self.num_key_value_groups, :]
358
+ query_states = rearrange(query_states, 'b q h gs d -> b q (h gs) d')
359
+ key_states = qkv_states[..., -2, :]
360
+ value_states = qkv_states[..., -1, :]
361
+
362
+ query_states = query_states.transpose(1, 2)
363
+ key_states = key_states.transpose(1, 2)
364
+ value_states = value_states.transpose(1, 2)
365
+
366
+ kv_seq_len = key_states.shape[-2]
367
+ if past_key_value is not None:
368
+ kv_seq_len += past_key_value[0].shape[-2]
369
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
370
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
371
+
372
+ if past_key_value is not None:
373
+ # reuse k, v, self_attention
374
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
375
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
376
+
377
+ past_key_value = (key_states, value_states) if use_cache else None
378
+
379
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
380
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
381
+
382
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
383
+
384
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
385
+ raise ValueError(
386
+ f'Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is'
387
+ f' {attn_weights.size()}'
388
+ )
389
+
390
+ if attention_mask is not None:
391
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
392
+ raise ValueError(
393
+ f'Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}'
394
+ )
395
+ attn_weights = attn_weights + attention_mask
396
+
397
+ # upcast attention to fp32
398
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
399
+ attn_output = torch.matmul(attn_weights, value_states)
400
+
401
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
402
+ raise ValueError(
403
+ f'`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is'
404
+ f' {attn_output.size()}'
405
+ )
406
+
407
+ attn_output = attn_output.transpose(1, 2).contiguous()
408
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
409
+
410
+ attn_output = self.wo(attn_output)
411
+
412
+ if not output_attentions:
413
+ attn_weights = None
414
+
415
+ return attn_output, attn_weights, past_key_value
416
+
417
+
418
+ # Modified from transformers.model.llama.modeling_llama.InternLM2FlashAttention2
419
+ class InternLM2FlashAttention2(InternLM2Attention):
420
+ """
421
+ InternLM2 flash attention module. This module inherits from `InternLM2Attention` as the weights of the module stays
422
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
423
+ flash attention and deal with padding tokens in case the input contains any of them.
424
+ """
425
+
426
+ def forward(
427
+ self,
428
+ hidden_states: torch.Tensor,
429
+ attention_mask: Optional[torch.LongTensor] = None,
430
+ position_ids: Optional[torch.LongTensor] = None,
431
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
432
+ output_attentions: bool = False,
433
+ use_cache: bool = False,
434
+ **kwargs,
435
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
436
+ # InternLM2FlashAttention2 attention does not support output_attentions
437
+ if 'padding_mask' in kwargs:
438
+ warnings.warn(
439
+ 'Passing `padding_mask` is deprecated and will be removed in v4.37. '
440
+ 'Please make sure use `attention_mask` instead.`'
441
+ )
442
+
443
+ # overwrite attention_mask with padding_mask
444
+ attention_mask = kwargs.pop('padding_mask')
445
+
446
+ output_attentions = False
447
+
448
+ bsz, q_len, _ = hidden_states.size()
449
+
450
+ qkv_states = self.wqkv(hidden_states)
451
+
452
+ qkv_states = rearrange(
453
+ qkv_states,
454
+ 'b q (h gs d) -> b q h gs d',
455
+ gs=2 + self.num_key_value_groups,
456
+ d=self.head_dim,
457
+ )
458
+
459
+ query_states = qkv_states[..., : self.num_key_value_groups, :]
460
+ query_states = rearrange(query_states, 'b q h gs d -> b q (h gs) d')
461
+ key_states = qkv_states[..., -2, :]
462
+ value_states = qkv_states[..., -1, :]
463
+
464
+ query_states = query_states.transpose(1, 2)
465
+ key_states = key_states.transpose(1, 2)
466
+ value_states = value_states.transpose(1, 2)
467
+
468
+ kv_seq_len = key_states.shape[-2]
469
+ if past_key_value is not None:
470
+ kv_seq_len += past_key_value[0].shape[-2]
471
+
472
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
473
+
474
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
475
+
476
+ if past_key_value is not None:
477
+ # reuse k, v, self_attention
478
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
479
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
480
+
481
+ past_key_value = (key_states, value_states) if use_cache else None
482
+
483
+ query_states = query_states.transpose(1, 2)
484
+ key_states = key_states.transpose(1, 2)
485
+ value_states = value_states.transpose(1, 2)
486
+
487
+ attn_output = self._flash_attention_forward(
488
+ query_states, key_states, value_states, attention_mask, q_len
489
+ )
490
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
491
+ attn_output = self.wo(attn_output)
492
+
493
+ if not output_attentions:
494
+ attn_weights = None
495
+
496
+ return attn_output, attn_weights, past_key_value
497
+
498
+ def _flash_attention_forward(
499
+ self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
500
+ ):
501
+ """
502
+ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
503
+ first unpad the input, then computes the attention scores and pad the final attention scores.
504
+
505
+ Args:
506
+ query_states (`torch.Tensor`):
507
+ Input query states to be passed to Flash Attention API
508
+ key_states (`torch.Tensor`):
509
+ Input key states to be passed to Flash Attention API
510
+ value_states (`torch.Tensor`):
511
+ Input value states to be passed to Flash Attention API
512
+ attention_mask (`torch.Tensor`):
513
+ The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
514
+ position of padding tokens and 1 for the position of non-padding tokens.
515
+ dropout (`int`, *optional*):
516
+ Attention dropout
517
+ softmax_scale (`float`, *optional*):
518
+ The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
519
+ """
520
+ # Contains at least one padding token in the sequence
521
+ causal = self.is_causal and query_length != 1
522
+ if attention_mask is not None:
523
+ batch_size = query_states.shape[0]
524
+ query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._unpad_input(
525
+ query_states, key_states, value_states, attention_mask, query_length
526
+ )
527
+
528
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
529
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
530
+
531
+ attn_output_unpad = flash_attn_varlen_func(
532
+ query_states,
533
+ key_states,
534
+ value_states,
535
+ cu_seqlens_q=cu_seqlens_q,
536
+ cu_seqlens_k=cu_seqlens_k,
537
+ max_seqlen_q=max_seqlen_in_batch_q,
538
+ max_seqlen_k=max_seqlen_in_batch_k,
539
+ dropout_p=dropout,
540
+ softmax_scale=softmax_scale,
541
+ causal=causal,
542
+ )
543
+
544
+ attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
545
+ else:
546
+ attn_output = flash_attn_func(
547
+ query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
548
+ )
549
+
550
+ return attn_output
551
+
552
+ def _unpad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
553
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
554
+ batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
555
+
556
+ key_layer = index_first_axis(
557
+ key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
558
+ )
559
+ value_layer = index_first_axis(
560
+ value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
561
+ )
562
+
563
+ if query_length == kv_seq_len:
564
+ query_layer = index_first_axis(
565
+ query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
566
+ )
567
+ cu_seqlens_q = cu_seqlens_k
568
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
569
+ indices_q = indices_k
570
+ elif query_length == 1:
571
+ max_seqlen_in_batch_q = 1
572
+ cu_seqlens_q = torch.arange(
573
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
574
+ ) # There is a memcpy here, that is very bad.
575
+ indices_q = cu_seqlens_q[:-1]
576
+ query_layer = query_layer.squeeze(1)
577
+ else:
578
+ # The -q_len: slice assumes left padding.
579
+ attention_mask = attention_mask[:, -query_length:]
580
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
581
+
582
+ return (
583
+ query_layer,
584
+ key_layer,
585
+ value_layer,
586
+ indices_q.to(torch.int64),
587
+ (cu_seqlens_q, cu_seqlens_k),
588
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
589
+ )
590
+
591
+
592
+ INTERNLM2_ATTENTION_CLASSES = {
593
+ 'eager': InternLM2Attention,
594
+ 'flash_attention_2': InternLM2FlashAttention2,
595
+ }
596
+
597
+
598
+ # Modified from transformers.model.llama.modeling_llama.LlamaDecoderLayer
599
+ class InternLM2DecoderLayer(nn.Module):
600
+ def __init__(self, config: InternLM2Config):
601
+ super().__init__()
602
+ self.hidden_size = config.hidden_size
603
+
604
+ self.attention = INTERNLM2_ATTENTION_CLASSES[config.attn_implementation](config=config)
605
+
606
+ self.feed_forward = InternLM2MLP(config)
607
+ self.attention_norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
608
+ self.ffn_norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
609
+
610
+ def forward(
611
+ self,
612
+ hidden_states: torch.Tensor,
613
+ attention_mask: Optional[torch.Tensor] = None,
614
+ position_ids: Optional[torch.LongTensor] = None,
615
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
616
+ output_attentions: Optional[bool] = False,
617
+ use_cache: Optional[bool] = False,
618
+ **kwargs,
619
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
620
+ """
621
+ Args:
622
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
623
+ attention_mask (`torch.FloatTensor`, *optional*):
624
+ attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
625
+ query_sequence_length, key_sequence_length)` if default attention is used.
626
+ output_attentions (`bool`, *optional*):
627
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
628
+ returned tensors for more detail.
629
+ use_cache (`bool`, *optional*):
630
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
631
+ (see `past_key_values`).
632
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
633
+ """
634
+ if 'padding_mask' in kwargs:
635
+ warnings.warn(
636
+ 'Passing `padding_mask` is deprecated and will be removed in v4.37. '
637
+ 'Please make sure use `attention_mask` instead.`'
638
+ )
639
+
640
+ residual = hidden_states
641
+
642
+ hidden_states = self.attention_norm(hidden_states)
643
+
644
+ # Self Attention
645
+ hidden_states, self_attn_weights, present_key_value = self.attention(
646
+ hidden_states=hidden_states,
647
+ attention_mask=attention_mask,
648
+ position_ids=position_ids,
649
+ past_key_value=past_key_value,
650
+ output_attentions=output_attentions,
651
+ use_cache=use_cache,
652
+ **kwargs,
653
+ )
654
+ hidden_states = residual + hidden_states
655
+
656
+ # Fully Connected
657
+ residual = hidden_states
658
+ hidden_states = self.ffn_norm(hidden_states)
659
+ hidden_states = self.feed_forward(hidden_states)
660
+ hidden_states = residual + hidden_states
661
+
662
+ outputs = (hidden_states,)
663
+
664
+ if output_attentions:
665
+ outputs += (self_attn_weights,)
666
+
667
+ if use_cache:
668
+ outputs += (present_key_value,)
669
+
670
+ return outputs
671
+
672
+
673
+ InternLM2_START_DOCSTRING = r"""
674
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
675
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
676
+ etc.)
677
+
678
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
679
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
680
+ and behavior.
681
+
682
+ Parameters:
683
+ config ([`InternLM2Config`]):
684
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
685
+ load the weights associated with the model, only the configuration. Check out the
686
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
687
+ """
688
+
689
+
690
+ # Copied from transformers.models.llama.modeling_llama.LlamaPreTrainedModel with Llama->InternLM2
691
+ @add_start_docstrings(
692
+ 'The bare InternLM2 Model outputting raw hidden-states without any specific head on top.',
693
+ InternLM2_START_DOCSTRING,
694
+ )
695
+ class InternLM2PreTrainedModel(PreTrainedModel):
696
+ config_class = InternLM2Config
697
+ base_model_prefix = 'model'
698
+ supports_gradient_checkpointing = True
699
+ _no_split_modules = ['InternLM2DecoderLayer']
700
+ _skip_keys_device_placement = 'past_key_values'
701
+
702
+ def _init_weights(self, module):
703
+ std = self.config.initializer_range
704
+ if isinstance(module, nn.Linear):
705
+ module.weight.data.normal_(mean=0.0, std=std)
706
+ if module.bias is not None:
707
+ module.bias.data.zero_()
708
+ elif isinstance(module, nn.Embedding):
709
+ module.weight.data.normal_(mean=0.0, std=std)
710
+ if module.padding_idx is not None:
711
+ module.weight.data[module.padding_idx].zero_()
712
+
713
+
714
+ InternLM2_INPUTS_DOCSTRING = r"""
715
+ Args:
716
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
717
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
718
+ it.
719
+
720
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
721
+ [`PreTrainedTokenizer.__call__`] for details.
722
+
723
+ [What are input IDs?](../glossary#input-ids)
724
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
725
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
726
+
727
+ - 1 for tokens that are **not masked**,
728
+ - 0 for tokens that are **masked**.
729
+
730
+ [What are attention masks?](../glossary#attention-mask)
731
+
732
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
733
+ [`PreTrainedTokenizer.__call__`] for details.
734
+
735
+ If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
736
+ `past_key_values`).
737
+
738
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
739
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
740
+ information on the default strategy.
741
+
742
+ - 1 indicates the head is **not masked**,
743
+ - 0 indicates the head is **masked**.
744
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
745
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
746
+ config.n_positions - 1]`.
747
+
748
+ [What are position IDs?](../glossary#position-ids)
749
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or
750
+ when `config.use_cache=True`):
751
+ Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
752
+ `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
753
+ `(batch_size, num_heads, decoder_sequence_length, embed_size_per_head)`.
754
+
755
+ Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
756
+ blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
757
+
758
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
759
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
760
+ of shape `(batch_size, sequence_length)`.
761
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
762
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
763
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
764
+ model's internal embedding lookup matrix.
765
+ use_cache (`bool`, *optional*):
766
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
767
+ `past_key_values`).
768
+ output_attentions (`bool`, *optional*):
769
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
770
+ tensors for more detail.
771
+ output_hidden_states (`bool`, *optional*):
772
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
773
+ more detail.
774
+ return_dict (`bool`, *optional*):
775
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
776
+ """
777
+
778
+
779
+ # Modified from transformers.model.llama.modeling_llama.LlamaModel
780
+ @add_start_docstrings(
781
+ 'The bare InternLM2 Model outputting raw hidden-states without any specific head on top.',
782
+ InternLM2_START_DOCSTRING,
783
+ )
784
+ class InternLM2Model(InternLM2PreTrainedModel):
785
+ """
786
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`InternLM2DecoderLayer`]
787
+
788
+ Args:
789
+ config: InternLM2Config
790
+ """
791
+
792
+ _auto_class = 'AutoModel'
793
+
794
+ def __init__(self, config: InternLM2Config):
795
+ super().__init__(config)
796
+ self.padding_idx = config.pad_token_id
797
+ self.vocab_size = config.vocab_size
798
+ self.config = config
799
+
800
+ self.tok_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
801
+
802
+ self.layers = nn.ModuleList([InternLM2DecoderLayer(config) for _ in range(config.num_hidden_layers)])
803
+ self.norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
804
+
805
+ self.gradient_checkpointing = False
806
+ # Initialize weights and apply final processing
807
+ self.post_init()
808
+
809
+ def get_input_embeddings(self):
810
+ return self.tok_embeddings
811
+
812
+ def set_input_embeddings(self, value):
813
+ self.tok_embeddings = value
814
+
815
+ def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
816
+ # create causal mask
817
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
818
+ combined_attention_mask = None
819
+ if input_shape[-1] > 1:
820
+ combined_attention_mask = _make_causal_mask(
821
+ input_shape,
822
+ inputs_embeds.dtype,
823
+ device=inputs_embeds.device,
824
+ past_key_values_length=past_key_values_length,
825
+ )
826
+
827
+ if attention_mask is not None:
828
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
829
+ expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
830
+ inputs_embeds.device
831
+ )
832
+ combined_attention_mask = (
833
+ expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
834
+ )
835
+
836
+ return combined_attention_mask
837
+
838
+ @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
839
+ def forward(
840
+ self,
841
+ input_ids: torch.LongTensor = None,
842
+ attention_mask: Optional[torch.Tensor] = None,
843
+ position_ids: Optional[torch.LongTensor] = None,
844
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
845
+ inputs_embeds: Optional[torch.FloatTensor] = None,
846
+ use_cache: Optional[bool] = None,
847
+ output_attentions: Optional[bool] = None,
848
+ output_hidden_states: Optional[bool] = None,
849
+ return_dict: Optional[bool] = None,
850
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
851
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
852
+ output_hidden_states = (
853
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
854
+ )
855
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
856
+
857
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
858
+
859
+ if self.config.attn_implementation == 'flash_attention_2':
860
+ _import_flash_attn()
861
+
862
+ # retrieve input_ids and inputs_embeds
863
+ if input_ids is not None and inputs_embeds is not None:
864
+ raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time')
865
+ elif input_ids is not None:
866
+ batch_size, seq_length = input_ids.shape[:2]
867
+ elif inputs_embeds is not None:
868
+ batch_size, seq_length = inputs_embeds.shape[:2]
869
+ else:
870
+ raise ValueError('You have to specify either input_ids or inputs_embeds')
871
+
872
+ seq_length_with_past = seq_length
873
+ past_key_values_length = 0
874
+ if past_key_values is not None:
875
+ past_key_values_length = past_key_values[0][0].shape[2]
876
+ seq_length_with_past = seq_length_with_past + past_key_values_length
877
+
878
+ if position_ids is None:
879
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
880
+ position_ids = torch.arange(
881
+ past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
882
+ )
883
+ position_ids = position_ids.unsqueeze(0)
884
+
885
+ if inputs_embeds is None:
886
+ inputs_embeds = self.tok_embeddings(input_ids)
887
+
888
+ if self.config.attn_implementation == 'flash_attention_2':
889
+ # 2d mask is passed through the layers
890
+ attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
891
+ else:
892
+ if attention_mask is None:
893
+ attention_mask = torch.ones(
894
+ (batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
895
+ )
896
+ attention_mask = self._prepare_decoder_attention_mask(
897
+ attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
898
+ )
899
+
900
+ # embed positions
901
+ hidden_states = inputs_embeds
902
+
903
+ if self.gradient_checkpointing and self.training:
904
+ if use_cache:
905
+ logger.warning_once(
906
+ '`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...'
907
+ )
908
+ use_cache = False
909
+
910
+ # decoder layers
911
+ all_hidden_states = () if output_hidden_states else None
912
+ all_self_attns = () if output_attentions else None
913
+ next_decoder_cache = () if use_cache else None
914
+
915
+ for idx, decoder_layer in enumerate(self.layers):
916
+ if output_hidden_states:
917
+ all_hidden_states += (hidden_states,)
918
+
919
+ past_key_value = past_key_values[idx] if past_key_values is not None else None
920
+
921
+ if self.gradient_checkpointing and self.training:
922
+
923
+ def create_custom_forward(module):
924
+ def custom_forward(*inputs):
925
+ # None for past_key_value
926
+ return module(*inputs, output_attentions, None)
927
+
928
+ return custom_forward
929
+
930
+ layer_outputs = torch.utils.checkpoint.checkpoint(
931
+ create_custom_forward(decoder_layer),
932
+ hidden_states,
933
+ attention_mask,
934
+ position_ids,
935
+ None,
936
+ )
937
+ else:
938
+ layer_outputs = decoder_layer(
939
+ hidden_states,
940
+ attention_mask=attention_mask,
941
+ position_ids=position_ids,
942
+ past_key_value=past_key_value,
943
+ output_attentions=output_attentions,
944
+ use_cache=use_cache,
945
+ )
946
+
947
+ hidden_states = layer_outputs[0]
948
+
949
+ if use_cache:
950
+ next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
951
+
952
+ if output_attentions:
953
+ all_self_attns += (layer_outputs[1],)
954
+
955
+ hidden_states = self.norm(hidden_states)
956
+
957
+ # add hidden states from the last decoder layer
958
+ if output_hidden_states:
959
+ all_hidden_states += (hidden_states,)
960
+
961
+ next_cache = next_decoder_cache if use_cache else None
962
+ if not return_dict:
963
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
964
+ return BaseModelOutputWithPast(
965
+ last_hidden_state=hidden_states,
966
+ past_key_values=next_cache,
967
+ hidden_states=all_hidden_states,
968
+ attentions=all_self_attns,
969
+ )
970
+
971
+
972
+ # Modified from transformers.model.llama.modeling_llama.LlamaForCausalLM
973
+ class InternLM2ForCausalLM(InternLM2PreTrainedModel):
974
+ _auto_class = 'AutoModelForCausalLM'
975
+
976
+ _tied_weights_keys = ['output.weight']
977
+
978
+ def __init__(self, config):
979
+ super().__init__(config)
980
+ self.model = InternLM2Model(config)
981
+ self.vocab_size = config.vocab_size
982
+ self.output = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
983
+
984
+ # Initialize weights and apply final processing
985
+ self.post_init()
986
+
987
+ def get_input_embeddings(self):
988
+ return self.model.tok_embeddings
989
+
990
+ def set_input_embeddings(self, value):
991
+ self.model.tok_embeddings = value
992
+
993
+ def get_output_embeddings(self):
994
+ return self.output
995
+
996
+ def set_output_embeddings(self, new_embeddings):
997
+ self.output = new_embeddings
998
+
999
+ def set_decoder(self, decoder):
1000
+ self.model = decoder
1001
+
1002
+ def get_decoder(self):
1003
+ return self.model
1004
+
1005
+ @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
1006
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
1007
+ def forward(
1008
+ self,
1009
+ input_ids: torch.LongTensor = None,
1010
+ attention_mask: Optional[torch.Tensor] = None,
1011
+ position_ids: Optional[torch.LongTensor] = None,
1012
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1013
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1014
+ labels: Optional[torch.LongTensor] = None,
1015
+ use_cache: Optional[bool] = None,
1016
+ output_attentions: Optional[bool] = None,
1017
+ output_hidden_states: Optional[bool] = None,
1018
+ return_dict: Optional[bool] = None,
1019
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
1020
+ r"""
1021
+ Args:
1022
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1023
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
1024
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1025
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1026
+
1027
+ Returns:
1028
+
1029
+ Example:
1030
+
1031
+ ```python
1032
+ >>> from transformers import AutoTokenizer, InternLM2ForCausalLM
1033
+
1034
+ >>> model = InternLM2ForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
1035
+ >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
1036
+
1037
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
1038
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
1039
+
1040
+ >>> # Generate
1041
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
1042
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1043
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
1044
+ ```"""
1045
+
1046
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1047
+ output_hidden_states = (
1048
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1049
+ )
1050
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1051
+
1052
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1053
+ outputs = self.model(
1054
+ input_ids=input_ids,
1055
+ attention_mask=attention_mask,
1056
+ position_ids=position_ids,
1057
+ past_key_values=past_key_values,
1058
+ inputs_embeds=inputs_embeds,
1059
+ use_cache=use_cache,
1060
+ output_attentions=output_attentions,
1061
+ output_hidden_states=output_hidden_states,
1062
+ return_dict=return_dict,
1063
+ )
1064
+
1065
+ hidden_states = outputs[0]
1066
+ logits = self.output(hidden_states)
1067
+ logits = logits.float()
1068
+
1069
+ loss = None
1070
+ if labels is not None:
1071
+ # Shift so that tokens < n predict n
1072
+ shift_logits = logits[..., :-1, :].contiguous()
1073
+ shift_labels = labels[..., 1:].contiguous()
1074
+ # Flatten the tokens
1075
+ loss_fct = CrossEntropyLoss()
1076
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
1077
+ shift_labels = shift_labels.view(-1)
1078
+ # Enable model parallelism
1079
+ shift_labels = shift_labels.to(shift_logits.device)
1080
+ loss = loss_fct(shift_logits, shift_labels)
1081
+
1082
+ if not return_dict:
1083
+ output = (logits,) + outputs[1:]
1084
+ return (loss,) + output if loss is not None else output
1085
+
1086
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
1087
+ output = CausalLMOutputWithPast(
1088
+ loss=loss,
1089
+ logits=logits,
1090
+ past_key_values=outputs.past_key_values,
1091
+ hidden_states=outputs.hidden_states,
1092
+ attentions=outputs.attentions,
1093
+ )
1094
+ output['logits'] = output['logits'].to(device)
1095
+ return output
1096
+
1097
+ def prepare_inputs_for_generation(
1098
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
1099
+ ):
1100
+ if past_key_values is not None:
1101
+ past_length = past_key_values[0][0].shape[2]
1102
+
1103
+ # Some generation methods already pass only the last input ID
1104
+ if input_ids.shape[1] > past_length:
1105
+ remove_prefix_length = past_length
1106
+ else:
1107
+ # Default to old behavior: keep only final ID
1108
+ remove_prefix_length = input_ids.shape[1] - 1
1109
+
1110
+ input_ids = input_ids[:, remove_prefix_length:]
1111
+
1112
+ position_ids = kwargs.get('position_ids', None)
1113
+ if attention_mask is not None and position_ids is None:
1114
+ # create position_ids on the fly for batch generation
1115
+ position_ids = attention_mask.long().cumsum(-1) - 1
1116
+ position_ids.masked_fill_(attention_mask == 0, 1)
1117
+ if past_key_values:
1118
+ position_ids = position_ids[:, -input_ids.shape[1] :]
1119
+
1120
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1121
+ if inputs_embeds is not None and past_key_values is None:
1122
+ model_inputs = {'inputs_embeds': inputs_embeds}
1123
+ else:
1124
+ model_inputs = {'input_ids': input_ids}
1125
+
1126
+ model_inputs.update(
1127
+ {
1128
+ 'position_ids': position_ids,
1129
+ 'past_key_values': past_key_values,
1130
+ 'use_cache': kwargs.get('use_cache'),
1131
+ 'attention_mask': attention_mask,
1132
+ }
1133
+ )
1134
+ return model_inputs
1135
+
1136
+ @staticmethod
1137
+ def _reorder_cache(past_key_values, beam_idx):
1138
+ reordered_past = ()
1139
+ for layer_past in past_key_values:
1140
+ reordered_past += (
1141
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
1142
+ )
1143
+ return reordered_past
1144
+
1145
+ def build_inputs(self, tokenizer, query: str, history: List[Tuple[str, str]] = [], meta_instruction=''):
1146
+ if tokenizer.add_bos_token:
1147
+ prompt = ''
1148
+ else:
1149
+ prompt = tokenizer.bos_token
1150
+ if meta_instruction:
1151
+ prompt += f"""<|im_start|>system\n{meta_instruction}<|im_end|>\n"""
1152
+ for record in history:
1153
+ prompt += f"""<|im_start|>user\n{record[0]}<|im_end|>\n<|im_start|>assistant\n{record[1]}<|im_end|>\n"""
1154
+ prompt += f"""<|im_start|>user\n{query}<|im_end|>\n<|im_start|>assistant\n"""
1155
+ return tokenizer([prompt], return_tensors='pt')
1156
+
1157
+ @torch.no_grad()
1158
+ def chat(
1159
+ self,
1160
+ tokenizer,
1161
+ query: str,
1162
+ history: List[Tuple[str, str]] = [],
1163
+ streamer: Optional[BaseStreamer] = None,
1164
+ max_new_tokens: int = 1024,
1165
+ do_sample: bool = True,
1166
+ temperature: float = 0.8,
1167
+ top_p: float = 0.8,
1168
+ meta_instruction: str = 'You are an AI assistant whose name is InternLM (书生·浦语).\n'
1169
+ '- InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.\n'
1170
+ '- InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such as English and 中文.',
1171
+ **kwargs,
1172
+ ):
1173
+ inputs = self.build_inputs(tokenizer, query, history, meta_instruction)
1174
+ inputs = {k: v.to(self.device) for k, v in inputs.items() if torch.is_tensor(v)}
1175
+ # also add end-of-assistant token in eos token id to avoid unnecessary generation
1176
+ eos_token_id = [tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids(['<|im_end|>'])[0]]
1177
+ outputs = self.generate(
1178
+ **inputs,
1179
+ streamer=streamer,
1180
+ max_new_tokens=max_new_tokens,
1181
+ do_sample=do_sample,
1182
+ temperature=temperature,
1183
+ top_p=top_p,
1184
+ eos_token_id=eos_token_id,
1185
+ **kwargs,
1186
+ )
1187
+ outputs = outputs[0].cpu().tolist()[len(inputs['input_ids'][0]) :]
1188
+ response = tokenizer.decode(outputs, skip_special_tokens=True)
1189
+ response = response.split('<|im_end|>')[0]
1190
+ history = history + [(query, response)]
1191
+ return response, history
1192
+
1193
+ @torch.no_grad()
1194
+ def stream_chat(
1195
+ self,
1196
+ tokenizer,
1197
+ query: str,
1198
+ history: List[Tuple[str, str]] = [],
1199
+ max_new_tokens: int = 1024,
1200
+ do_sample: bool = True,
1201
+ temperature: float = 0.8,
1202
+ top_p: float = 0.8,
1203
+ **kwargs,
1204
+ ):
1205
+ """
1206
+ Return a generator in format: (response, history)
1207
+ Eg.
1208
+ ('你好,有什么可以帮助您的吗', [('你好', '你好,有什么可以帮助您的吗')])
1209
+ ('你好,有什么可以帮助您的吗?', [('你好', '你好,有什么可以帮助您的吗?')])
1210
+ """
1211
+ if BaseStreamer is None:
1212
+ raise ModuleNotFoundError(
1213
+ 'The version of `transformers` is too low. Please make sure '
1214
+ 'that you have installed `transformers>=4.28.0`.'
1215
+ )
1216
+
1217
+ response_queue = queue.Queue(maxsize=20)
1218
+
1219
+ class ChatStreamer(BaseStreamer):
1220
+ def __init__(self, tokenizer) -> None:
1221
+ super().__init__()
1222
+ self.tokenizer = tokenizer
1223
+ self.queue = response_queue
1224
+ self.query = query
1225
+ self.history = history
1226
+ self.response = ''
1227
+ self.cache = []
1228
+ self.received_inputs = False
1229
+ self.queue.put((self.response, history + [(self.query, self.response)]))
1230
+
1231
+ def put(self, value):
1232
+ if len(value.shape) > 1 and value.shape[0] > 1:
1233
+ raise ValueError('ChatStreamer only supports batch size 1')
1234
+ elif len(value.shape) > 1:
1235
+ value = value[0]
1236
+
1237
+ if not self.received_inputs:
1238
+ # The first received value is input_ids, ignore here
1239
+ self.received_inputs = True
1240
+ return
1241
+
1242
+ self.cache.extend(value.tolist())
1243
+ token = self.tokenizer.decode(self.cache, skip_special_tokens=True)
1244
+ if token.strip() != '<|im_end|>':
1245
+ self.response = self.response + token
1246
+ history = self.history + [(self.query, self.response)]
1247
+ self.queue.put((self.response, history))
1248
+ self.cache = []
1249
+ else:
1250
+ self.end()
1251
+
1252
+ def end(self):
1253
+ self.queue.put(None)
1254
+
1255
+ def stream_producer():
1256
+ return self.chat(
1257
+ tokenizer=tokenizer,
1258
+ query=query,
1259
+ streamer=ChatStreamer(tokenizer=tokenizer),
1260
+ history=history,
1261
+ max_new_tokens=max_new_tokens,
1262
+ do_sample=do_sample,
1263
+ temperature=temperature,
1264
+ top_p=top_p,
1265
+ **kwargs,
1266
+ )
1267
+
1268
+ def consumer():
1269
+ producer = threading.Thread(target=stream_producer)
1270
+ producer.start()
1271
+ while True:
1272
+ res = response_queue.get()
1273
+ if res is None:
1274
+ return
1275
+ yield res
1276
+
1277
+ return consumer()
1278
+
1279
+
1280
+ # Copied from transformers.model.llama.modeling_llama.LlamaForSequenceClassification with Llama->InternLM2
1281
+ @add_start_docstrings(
1282
+ """
1283
+ The InternLM2 Model transformer with a sequence classification head on top (linear layer).
1284
+
1285
+ [`InternLM2ForSequenceClassification`] uses the last token in order to do the classification,
1286
+ as other causal models (e.g. GPT-2) do.
1287
+
1288
+ Since it does classification on the last token, it requires to know the position of the last token. If a
1289
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
1290
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
1291
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
1292
+ each row of the batch).
1293
+ """,
1294
+ InternLM2_START_DOCSTRING,
1295
+ )
1296
+ class InternLM2ForSequenceClassification(InternLM2PreTrainedModel):
1297
+ def __init__(self, config):
1298
+ super().__init__(config)
1299
+ self.num_labels = config.num_labels
1300
+ self.model = InternLM2Model(config)
1301
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1302
+
1303
+ # Initialize weights and apply final processing
1304
+ self.post_init()
1305
+
1306
+ def get_input_embeddings(self):
1307
+ return self.model.tok_embeddings
1308
+
1309
+ def set_input_embeddings(self, value):
1310
+ self.model.tok_embeddings = value
1311
+
1312
+ @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
1313
+ def forward(
1314
+ self,
1315
+ input_ids: torch.LongTensor = None,
1316
+ attention_mask: Optional[torch.Tensor] = None,
1317
+ position_ids: Optional[torch.LongTensor] = None,
1318
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1319
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1320
+ labels: Optional[torch.LongTensor] = None,
1321
+ use_cache: Optional[bool] = None,
1322
+ output_attentions: Optional[bool] = None,
1323
+ output_hidden_states: Optional[bool] = None,
1324
+ return_dict: Optional[bool] = None,
1325
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1326
+ r"""
1327
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1328
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1329
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1330
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1331
+ """
1332
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1333
+
1334
+ transformer_outputs = self.model(
1335
+ input_ids,
1336
+ attention_mask=attention_mask,
1337
+ position_ids=position_ids,
1338
+ past_key_values=past_key_values,
1339
+ inputs_embeds=inputs_embeds,
1340
+ use_cache=use_cache,
1341
+ output_attentions=output_attentions,
1342
+ output_hidden_states=output_hidden_states,
1343
+ return_dict=return_dict,
1344
+ )
1345
+ hidden_states = transformer_outputs[0]
1346
+ logits = self.score(hidden_states)
1347
+
1348
+ if input_ids is not None:
1349
+ batch_size = input_ids.shape[0]
1350
+ else:
1351
+ batch_size = inputs_embeds.shape[0]
1352
+
1353
+ if self.config.pad_token_id is None and batch_size != 1:
1354
+ raise ValueError('Cannot handle batch sizes > 1 if no padding token is defined.')
1355
+ if self.config.pad_token_id is None:
1356
+ sequence_lengths = -1
1357
+ else:
1358
+ if input_ids is not None:
1359
+ sequence_lengths = (torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1).to(
1360
+ logits.device
1361
+ )
1362
+ else:
1363
+ sequence_lengths = -1
1364
+
1365
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
1366
+
1367
+ loss = None
1368
+ if labels is not None:
1369
+ labels = labels.to(logits.device)
1370
+ if self.config.problem_type is None:
1371
+ if self.num_labels == 1:
1372
+ self.config.problem_type = 'regression'
1373
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1374
+ self.config.problem_type = 'single_label_classification'
1375
+ else:
1376
+ self.config.problem_type = 'multi_label_classification'
1377
+
1378
+ if self.config.problem_type == 'regression':
1379
+ loss_fct = MSELoss()
1380
+ if self.num_labels == 1:
1381
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1382
+ else:
1383
+ loss = loss_fct(pooled_logits, labels)
1384
+ elif self.config.problem_type == 'single_label_classification':
1385
+ loss_fct = CrossEntropyLoss()
1386
+ loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
1387
+ elif self.config.problem_type == 'multi_label_classification':
1388
+ loss_fct = BCEWithLogitsLoss()
1389
+ loss = loss_fct(pooled_logits, labels)
1390
+ if not return_dict:
1391
+ output = (pooled_logits,) + transformer_outputs[1:]
1392
+ return ((loss,) + output) if loss is not None else output
1393
+
1394
+ return SequenceClassifierOutputWithPast(
1395
+ loss=loss,
1396
+ logits=pooled_logits,
1397
+ past_key_values=transformer_outputs.past_key_values,
1398
+ hidden_states=transformer_outputs.hidden_states,
1399
+ attentions=transformer_outputs.attentions,
1400
+ )
1401
+
1402
+
1403
+ if __name__ == '__main__':
1404
+ bs = 1
1405
+ num_attention_heads = 48
1406
+ seq_len = 2048
1407
+ head_size = 128
1408
+ x = torch.randn(bs, num_attention_heads, seq_len, head_size)
1409
+
1410
+ rotary_emb = InternLM2DynamicNTKScalingRotaryEmbedding(
1411
+ dim=128,
1412
+ max_position_embeddings=32768,
1413
+ base=1000000,
1414
+ scaling_factor=3.0,
1415
+ )
1416
+
1417
+ rotary_emb(x)
1418
+
SpiritSight-Agent-2B-base/modeling_internvl_chat.py ADDED
@@ -0,0 +1,482 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # InternVL
3
+ # Copyright (c) 2023 OpenGVLab
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # --------------------------------------------------------
6
+ import warnings
7
+ from typing import Any, List, Optional, Tuple, Union
8
+
9
+ import torch.utils.checkpoint
10
+ # from internvl.model.internlm2.modeling_internlm2 import InternLM2ForCausalLM
11
+ from .modeling_internlm2 import InternLM2ForCausalLM
12
+ from peft import LoraConfig, get_peft_model
13
+ from torch import nn
14
+ from torch.nn import CrossEntropyLoss
15
+ from transformers import (AutoModel, GenerationConfig, LlamaForCausalLM,
16
+ LlamaTokenizer)
17
+ from transformers.modeling_outputs import CausalLMOutputWithPast
18
+ from transformers.modeling_utils import PreTrainedModel
19
+ from transformers.utils import ModelOutput, logging
20
+
21
+ from .configuration_internvl_chat import InternVLChatConfig
22
+ from .modeling_intern_vit import InternVisionModel
23
+
24
+ logger = logging.get_logger(__name__)
25
+
26
+
27
+ class InternVLChatModel(PreTrainedModel):
28
+ config_class = InternVLChatConfig
29
+ main_input_name = 'pixel_values'
30
+ _no_split_modules = ['InternVisionEncoderLayer', 'LlamaDecoderLayer']
31
+
32
+ def __init__(self, config: InternVLChatConfig, vision_model=None, language_model=None):
33
+ super().__init__(config)
34
+
35
+ image_size = config.force_image_size or config.vision_config.image_size
36
+ patch_size = config.vision_config.patch_size
37
+ self.patch_size = patch_size
38
+ self.select_layer = config.select_layer
39
+ self.template = config.template
40
+ self.num_image_token = int((image_size // patch_size) ** 2 * (config.downsample_ratio ** 2))
41
+ self.downsample_ratio = config.downsample_ratio
42
+ self.ps_version = config.ps_version
43
+ self.block_revise = config.block_revise
44
+
45
+ logger.info(f'num_image_token: {self.num_image_token}')
46
+ logger.info(f'ps_version: {self.ps_version}')
47
+ if vision_model is not None:
48
+ self.vision_model = vision_model
49
+ else:
50
+ self.vision_model = InternVisionModel(config.vision_config)
51
+ if language_model is not None:
52
+ self.language_model = language_model
53
+ else:
54
+ if config.llm_config.architectures[0] == 'LlamaForCausalLM':
55
+ self.language_model = LlamaForCausalLM(config.llm_config)
56
+ elif config.llm_config.architectures[0] == 'InternLM2ForCausalLM':
57
+ self.language_model = InternLM2ForCausalLM(config.llm_config)
58
+ else:
59
+ raise NotImplementedError(f'{config.llm_config.architectures[0]} is not implemented.')
60
+
61
+ vit_hidden_size = config.vision_config.hidden_size
62
+ llm_hidden_size = config.llm_config.hidden_size
63
+
64
+ self.mlp1 = nn.Sequential(
65
+ nn.LayerNorm(vit_hidden_size * int(1 / self.downsample_ratio) ** 2),
66
+ nn.Linear(vit_hidden_size * int(1 / self.downsample_ratio) ** 2, llm_hidden_size),
67
+ nn.GELU(),
68
+ nn.Linear(llm_hidden_size, llm_hidden_size)
69
+ )
70
+
71
+ if config.block_position_embedding is not None:
72
+ max_len = config.block_max_len
73
+ vit_output_size = vit_hidden_size * int(1 / self.downsample_ratio) ** 2
74
+ if config.block_position_embedding == 'v1':
75
+ self.position_embedding_block_x = nn.Parameter(torch.randn(1, max_len, vit_output_size)) # [block_h, block_w, channel]
76
+ self.position_embedding_block_y = nn.Parameter(torch.randn(max_len, 1, vit_output_size))
77
+ elif config.block_position_embedding == 'v2':
78
+ position_embedding_blocks_x = torch.zeros(max_len, vit_output_size)
79
+ position_embedding_blocks_y = torch.zeros(max_len, vit_output_size)
80
+ position_embedding_blocks_x.requires_grad = False
81
+ position_embedding_blocks_y.requires_grad = False
82
+
83
+ pos = torch.arange(0, max_len).float().unsqueeze(dim=1)
84
+ _2i = torch.arange(0, vit_output_size, step=2).float()
85
+
86
+ position_embedding_blocks_x[:, 0::2] = torch.sin(pos / (10000 ** (_2i / vit_output_size)))
87
+ position_embedding_blocks_x[:, 1::2] = torch.cos(pos / (10000 ** (_2i / vit_output_size)))
88
+ position_embedding_blocks_y[:, 0::2] = torch.cos(pos / (10000 ** (_2i / vit_output_size)))
89
+ position_embedding_blocks_y[:, 1::2] = -torch.sin(pos / (10000 ** (_2i / vit_output_size)))
90
+
91
+ self.register_buffer('position_embedding_block_x', position_embedding_blocks_x.view(1, max_len, vit_output_size), persistent=False)
92
+ self.register_buffer('position_embedding_block_y', position_embedding_blocks_y.view(max_len, 1, vit_output_size), persistent=False)
93
+ self.position_embedding_block_scale = nn.Parameter(torch.tensor(0.4531)) # self.position_embedding.data.mean() = 0.4531
94
+ else:
95
+ raise ValueError(f"Got unexcepted block_position_embedding {config.block_position_embedding}")
96
+
97
+ # if config.force_image_size != config.vision_config.image_size:
98
+ # self.vision_model.resize_pos_embeddings(
99
+ # old_size=config.vision_config.image_size,
100
+ # new_size=config.force_image_size,
101
+ # patch_size=config.vision_config.patch_size
102
+ # )
103
+
104
+ self.img_context_token_id = None
105
+ self.neftune_alpha = None
106
+
107
+ if config.use_backbone_lora:
108
+ alpha = config.use_backbone_alpha if config.use_backbone_alpha > 0 else 2 * config.use_backbone_lora
109
+ self.wrap_backbone_lora(r=config.use_backbone_lora, lora_alpha=alpha)
110
+
111
+ if config.use_llm_lora:
112
+ alpha = config.use_llm_alpha if config.use_llm_alpha > 0 else 2 * config.use_llm_lora
113
+ self.wrap_llm_lora(r=config.use_llm_lora, lora_alpha=alpha)
114
+
115
+ def wrap_backbone_lora(self, r=128, lora_alpha=256, lora_dropout=0.05):
116
+ lora_config = LoraConfig(
117
+ r=r,
118
+ target_modules=['attn.qkv', 'attn.proj', 'mlp.fc1', 'mlp.fc2'],
119
+ lora_alpha=lora_alpha,
120
+ lora_dropout=lora_dropout,
121
+ )
122
+ self.vision_model = get_peft_model(self.vision_model, lora_config)
123
+ self.vision_model.print_trainable_parameters()
124
+
125
+ def wrap_llm_lora(self, r=128, lora_alpha=256, lora_dropout=0.05):
126
+ lora_config = LoraConfig(
127
+ r=r,
128
+ # target_modules=['self_attn.q_proj', 'self_attn.k_proj', 'self_attn.v_proj', 'self_attn.o_proj',
129
+ # 'mlp.gate_proj', 'mlp.down_proj', 'mlp.up_proj'],
130
+ target_modules = ['feed_forward.w1', 'feed_forward.w2', 'feed_forward.w3',
131
+ 'attention.wo', 'attention.wqkv'],
132
+ lora_alpha=lora_alpha,
133
+ lora_dropout=lora_dropout,
134
+ task_type='CAUSAL_LM'
135
+ )
136
+ self.language_model = get_peft_model(self.language_model, lora_config)
137
+ self.language_model.enable_input_require_grads()
138
+ self.language_model.print_trainable_parameters()
139
+
140
+ # generate 不会经过 forward !!!!!
141
+ def forward(
142
+ self,
143
+ pixel_values: torch.FloatTensor,
144
+ input_ids: torch.LongTensor = None,
145
+ attention_mask: Optional[torch.Tensor] = None,
146
+ position_ids: Optional[torch.LongTensor] = None,
147
+ image_flags: Optional[torch.LongTensor] = None,
148
+ target_aspect_ratio: Optional[torch.LongTensor] = None,
149
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
150
+ labels: Optional[torch.LongTensor] = None,
151
+ use_cache: Optional[bool] = None,
152
+ output_attentions: Optional[bool] = None,
153
+ output_hidden_states: Optional[bool] = None,
154
+ return_dict: Optional[bool] = None,
155
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
156
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
157
+
158
+ image_flags = image_flags.squeeze(-1)
159
+ input_embeds = self.language_model.get_input_embeddings()(input_ids).clone()
160
+
161
+ vit_embeds = self.extract_feature(pixel_values, target_aspect_ratio)
162
+ vit_embeds = vit_embeds[image_flags == 1]
163
+ vit_batch_size = pixel_values.shape[0]
164
+
165
+ B, N, C = input_embeds.shape
166
+ input_embeds = input_embeds.reshape(B * N, C)
167
+
168
+ # if torch.distributed.get_rank() == 0:
169
+ # print(f'dynamic ViT batch size: {vit_batch_size}, images per sample: {vit_batch_size / B}, dynamic token length: {N}')
170
+
171
+ input_ids = input_ids.reshape(B * N)
172
+ selected = (input_ids == self.img_context_token_id)
173
+ try:
174
+ if not self.block_revise:
175
+ input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds.reshape(-1, C)
176
+ else:
177
+ vit_embeds_h = vit_embeds_w = int(vit_embeds.shape[1] ** 0.5)
178
+ vit_embeds = vit_embeds.view(vit_embeds.shape[0], vit_embeds_h, vit_embeds_w, -1)
179
+ start_idx = 0
180
+ img_batch = []
181
+ for block_num_w, block_num_h in target_aspect_ratio:
182
+ img = vit_embeds[start_idx: start_idx + block_num_w * block_num_h].view(block_num_h, block_num_w, vit_embeds_h, vit_embeds_w, -1)
183
+ img = img.permute(0, 2, 1, 3, 4).reshape(-1, C) # [block_num_h * vit_embeds_h * block_num_w * vit_embeds_w, channels]
184
+ img_batch.append(img)
185
+ start_idx += block_num_w * block_num_h
186
+ vit_embeds = torch.cat(img_batch, dim=0)
187
+ input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds
188
+
189
+ except Exception as e:
190
+ vit_embeds = vit_embeds.reshape(-1, C)
191
+ print(f'warning: {e}, input_embeds[selected].shape={input_embeds[selected].shape}, '
192
+ f'vit_embeds.shape={vit_embeds.shape}')
193
+ n_token = selected.sum()
194
+ input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds[:n_token]
195
+
196
+ input_embeds = input_embeds.reshape(B, N, C)
197
+
198
+ outputs = self.language_model(
199
+ inputs_embeds=input_embeds,
200
+ attention_mask=attention_mask,
201
+ position_ids=position_ids,
202
+ past_key_values=past_key_values,
203
+ use_cache=use_cache,
204
+ output_attentions=output_attentions,
205
+ output_hidden_states=output_hidden_states,
206
+ return_dict=return_dict,
207
+ )
208
+ logits = outputs.logits
209
+
210
+ loss = None
211
+ if labels is not None:
212
+ # Shift so that tokens < n predict n
213
+ shift_logits = logits[..., :-1, :].contiguous()
214
+ shift_labels = labels[..., 1:].contiguous()
215
+ # Flatten the tokens
216
+ loss_fct = CrossEntropyLoss()
217
+ shift_logits = shift_logits.view(-1, self.language_model.config.vocab_size)
218
+ shift_labels = shift_labels.view(-1)
219
+ # Enable model parallelism
220
+ shift_labels = shift_labels.to(shift_logits.device)
221
+ loss = loss_fct(shift_logits, shift_labels)
222
+
223
+ if not return_dict:
224
+ output = (logits,) + outputs[1:]
225
+ return (loss,) + output if loss is not None else output
226
+
227
+ return CausalLMOutputWithPast(
228
+ loss=loss,
229
+ logits=logits,
230
+ past_key_values=outputs.past_key_values,
231
+ hidden_states=outputs.hidden_states,
232
+ attentions=outputs.attentions,
233
+ )
234
+
235
+ def pixel_shuffle(self, x, scale_factor=0.5, target_aspect_ratio=None):
236
+ n, w, h, c = x.size()
237
+ # N, W, H, C --> N, W, H * scale, C // scale
238
+ x = x.view(n, w, int(h * scale_factor), int(c / scale_factor))
239
+ # N, W, H * scale, C // scale --> N, H * scale, W, C // scale
240
+ x = x.permute(0, 2, 1, 3).contiguous()
241
+ # N, H * scale, W, C // scale --> N, H * scale, W * scale, C // (scale ** 2)
242
+ x = x.view(n, int(h * scale_factor), int(w * scale_factor),
243
+ int(c / (scale_factor * scale_factor)))
244
+ if self.ps_version == 'v1':
245
+ warnings.warn("In ps_version 'v1', the height and width have not been swapped back, "
246
+ 'which results in a transposed image.')
247
+ else:
248
+ x = x.permute(0, 2, 1, 3).contiguous()
249
+
250
+ # 2D position embedding
251
+ if self.config.block_position_embedding is not None:
252
+ if target_aspect_ratio is None:
253
+ raise ValueError("Expected target_aspect_ratio when block_position_embedding is not None")
254
+
255
+ if self.config.block_position_embedding in ['v1', 'v2']:
256
+ vit_output_size = int(self.config.vision_config.hidden_size / (scale_factor * scale_factor))
257
+
258
+ block_embed_x = []
259
+ block_embed_y = []
260
+ for ratio in target_aspect_ratio: # ratio: (w, h)
261
+ block_embed_x_item = self.position_embedding_block_x[:, :ratio[0], :].repeat(ratio[1], 1, 1) # [block_h, block_w, channel]
262
+ block_embed_y_item = self.position_embedding_block_y[:ratio[1], :, :].repeat(1, ratio[0], 1)
263
+
264
+ block_embed_x.append(block_embed_x_item.view(-1, 1, 1, vit_output_size)) # [block_h*block_w, 1, 1, channel]
265
+ block_embed_y.append(block_embed_y_item.view(-1, 1, 1, vit_output_size))
266
+
267
+ block_embed_x = torch.cat(block_embed_x, 0) # [B*block_h*block_w, 1, 1, channel]
268
+ block_embed_y = torch.cat(block_embed_y, 0)
269
+
270
+ # breakpoint()
271
+ if self.config.block_position_embedding == 'v1':
272
+ x = x + block_embed_x + block_embed_y # [B*block_h*block_w, width*height, channel]
273
+ elif self.config.block_position_embedding == 'v2':
274
+ x = x + (block_embed_x + block_embed_y) * self.position_embedding_block_scale
275
+
276
+ return x
277
+
278
+ def noised_embed(self, vit_embeds, noise_alpha=5):
279
+ dims = torch.tensor(vit_embeds.size(1) * vit_embeds.size(2))
280
+ mag_norm = noise_alpha / torch.sqrt(dims)
281
+ noise = torch.zeros_like(vit_embeds).uniform_(-mag_norm, mag_norm)
282
+ return vit_embeds + noise
283
+
284
+ def extract_feature(self, pixel_values, target_aspect_ratio=None):
285
+ if self.select_layer == -1:
286
+ vit_embeds = self.vision_model(
287
+ pixel_values=pixel_values,
288
+ target_aspect_ratio=target_aspect_ratio,
289
+ output_hidden_states=False,
290
+ return_dict=True).last_hidden_state
291
+ else:
292
+ vit_embeds = self.vision_model(
293
+ pixel_values=pixel_values,
294
+ target_aspect_ratio=target_aspect_ratio,
295
+ output_hidden_states=True,
296
+ return_dict=True).hidden_states[self.select_layer]
297
+ vit_embeds = vit_embeds[:, 1:, :]
298
+
299
+ if self.training and self.neftune_alpha is not None:
300
+ vit_embeds = self.noised_embed(vit_embeds, self.neftune_alpha)
301
+
302
+ h = w = int(vit_embeds.shape[1] ** 0.5)
303
+ vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1)
304
+ vit_embeds = self.pixel_shuffle(vit_embeds, scale_factor=self.downsample_ratio, target_aspect_ratio=target_aspect_ratio)
305
+ vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1])
306
+ vit_embeds = self.mlp1(vit_embeds)#.to(pixel_values.device)
307
+ return vit_embeds
308
+
309
+ def chat(self, tokenizer, pixel_values, question, generation_config, target_aspect_ratio=None, history=None, return_history=False,
310
+ IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>', IMG_CONTEXT_TOKEN='<IMG_CONTEXT>'):
311
+
312
+ img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
313
+ self.img_context_token_id = img_context_token_id
314
+ if tokenizer.convert_tokens_to_ids('<|im_end|>') != 0:
315
+ eos_token_id = tokenizer.convert_tokens_to_ids('<|im_end|>') # 92542, InternLM2
316
+ else:
317
+ eos_token_id = tokenizer.eos_token_id
318
+
319
+ # from internvl.conversation import get_conv_template
320
+ from .conversation import get_conv_template
321
+
322
+ template = get_conv_template(self.template)
323
+ image_bs = pixel_values.shape[0]
324
+ # print(f'dynamic ViT batch size: {image_bs}')
325
+ if history is None:
326
+ history = []
327
+ image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * image_bs + IMG_END_TOKEN
328
+ question = image_tokens + '\n' + question
329
+ else:
330
+ for (old_question, old_answer) in history:
331
+ template.append_message(template.roles[0], old_question)
332
+ template.append_message(template.roles[1], old_answer)
333
+ template.append_message(template.roles[0], question)
334
+ template.append_message(template.roles[1], None)
335
+ query = template.get_prompt()
336
+ model_inputs = tokenizer(query, return_tensors='pt')
337
+ input_ids = model_inputs['input_ids'].cuda()
338
+ attention_mask = model_inputs['attention_mask'].cuda()
339
+ generation_config['eos_token_id'] = eos_token_id
340
+ generation_output = self.generate(
341
+ pixel_values=pixel_values,
342
+ input_ids=input_ids,
343
+ attention_mask=attention_mask,
344
+ target_aspect_ratio=target_aspect_ratio,
345
+ **generation_config
346
+ )
347
+ response = tokenizer.batch_decode(generation_output, skip_special_tokens=True)[0]
348
+ response = response.split('<|im_end|>')[0].strip() # for InternLM2
349
+ history.append((question, response))
350
+ if return_history:
351
+ return response, history
352
+ else:
353
+ query_to_print = query.replace(image_tokens, '<image>')
354
+ # print(query_to_print, response)
355
+ return response
356
+ return response
357
+
358
+ def multi_image_chat(self, tokenizer, pixel_values, image_counts, question, generation_config, history=None,
359
+ return_history=False, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>', IMG_CONTEXT_TOKEN='<IMG_CONTEXT>'):
360
+
361
+ img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
362
+ self.img_context_token_id = img_context_token_id
363
+ if tokenizer.convert_tokens_to_ids('<|im_end|>') != 0:
364
+ eos_token_id = tokenizer.convert_tokens_to_ids('<|im_end|>') # 92542, InternLM2
365
+ else:
366
+ eos_token_id = tokenizer.eos_token_id
367
+
368
+ # from internvl.conversation import get_conv_template
369
+ from .conversation import get_conv_template
370
+
371
+ template = get_conv_template(self.template)
372
+
373
+ if history is None:
374
+ history = []
375
+ image_tokens = ''
376
+ image_bs = pixel_values.shape[0]
377
+ print(f'dynamic ViT batch size: {image_bs}, image_counts: {image_counts}')
378
+ for idx, image_count in enumerate(image_counts):
379
+ image_tokens += f'<image {idx+1}> (图{idx+1}):' + IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * image_count + IMG_END_TOKEN
380
+ question = image_tokens + '\n' + question
381
+ else:
382
+ for (old_question, old_answer) in history:
383
+ template.append_message(template.roles[0], old_question)
384
+ template.append_message(template.roles[1], old_answer)
385
+ template.append_message(template.roles[0], question)
386
+ template.append_message(template.roles[1], None)
387
+ query = template.get_prompt()
388
+ model_inputs = tokenizer(query, return_tensors='pt')
389
+ input_ids = model_inputs['input_ids'].cuda()
390
+ attention_mask = model_inputs['attention_mask'].cuda()
391
+ generation_config['eos_token_id'] = eos_token_id
392
+
393
+ generation_output = self.generate(
394
+ pixel_values=pixel_values,
395
+ input_ids=input_ids,
396
+ attention_mask=attention_mask,
397
+ **generation_config
398
+ )
399
+ response = tokenizer.batch_decode(generation_output, skip_special_tokens=True)[0]
400
+ response = response.split('<|im_end|>')[0].strip() # for InternLM2
401
+ history.append((question, response))
402
+ if return_history:
403
+ return response, history
404
+ else:
405
+ query_to_print = query.replace(image_tokens, '<image>')
406
+ # print(query_to_print, response)
407
+ return response
408
+ return response
409
+
410
+ @torch.no_grad()
411
+ def generate(
412
+ self,
413
+ pixel_values: Optional[torch.FloatTensor] = None,
414
+ input_ids: Optional[torch.FloatTensor] = None,
415
+ attention_mask: Optional[torch.LongTensor] = None,
416
+ visual_features: Optional[torch.FloatTensor] = None,
417
+ target_aspect_ratio: Optional[torch.LongTensor] = None,
418
+ generation_config: Optional[GenerationConfig] = None,
419
+ output_hidden_states: Optional[bool] = None,
420
+ return_dict: Optional[bool] = None,
421
+ **generate_kwargs,
422
+ ) -> torch.LongTensor:
423
+
424
+ assert self.img_context_token_id is not None
425
+ if pixel_values is not None:
426
+ if visual_features is not None:
427
+ vit_embeds = visual_features
428
+ else:
429
+ vit_embeds = self.extract_feature(pixel_values, target_aspect_ratio)
430
+
431
+ input_embeds = self.language_model.get_input_embeddings()(input_ids)
432
+ B, N, C = input_embeds.shape
433
+ input_embeds = input_embeds.reshape(B * N, C)
434
+
435
+ input_ids = input_ids.reshape(B * N)
436
+ selected = (input_ids == self.img_context_token_id)
437
+ assert selected.sum() != 0
438
+ if not self.block_revise:
439
+ input_embeds[selected] = vit_embeds.reshape(-1, C).to(input_embeds.device)
440
+ else:
441
+ vit_embeds_h = vit_embeds_w = int(vit_embeds.shape[1] ** 0.5)
442
+ vit_embeds = vit_embeds.view(vit_embeds.shape[0], vit_embeds_h, vit_embeds_w, -1)
443
+ start_idx = 0
444
+ img_batch = []
445
+ for block_num_w, block_num_h in target_aspect_ratio:
446
+ img = vit_embeds[start_idx: start_idx + block_num_w * block_num_h].view(block_num_h, block_num_w, vit_embeds_h, vit_embeds_w, -1)
447
+ img = img.permute(0, 2, 1, 3, 4).reshape(-1, C) # [block_num_h * vit_embeds_h * block_num_w * vit_embeds_w, channels]
448
+ img_batch.append(img)
449
+ start_idx += block_num_w * block_num_h
450
+ vit_embeds = torch.cat(img_batch, dim=0)
451
+ input_embeds[selected] = vit_embeds.to(input_embeds.device)
452
+
453
+ input_embeds = input_embeds.reshape(B, N, C)
454
+ else:
455
+ input_embeds = self.language_model.get_input_embeddings()(input_ids)
456
+
457
+ # transformers 在 train 中 eval 的一些考虑不足的地方
458
+ # 数据集中 __getitem__ 出来的所有键值,不在 position args 中的,
459
+ # 会跑到 keyword args 中,也就是这里的 generate_kwargs
460
+ if 'image_flags' in generate_kwargs:
461
+ generate_kwargs.pop('image_flags')
462
+
463
+ generate_kwargs_new = {
464
+ "num_beams": 1,
465
+ "max_new_tokens": 1024,
466
+ "min_new_tokens": 1,
467
+ "do_sample": True,
468
+ "temperature": 0.8,
469
+ "eos_token_id": 92542,
470
+ }
471
+ generate_kwargs_new.update(**generate_kwargs)
472
+ outputs = self.language_model.generate(
473
+ inputs_embeds=input_embeds,
474
+ attention_mask=attention_mask,
475
+ generation_config=generation_config,
476
+ output_hidden_states=output_hidden_states,
477
+ return_dict=return_dict,
478
+ use_cache=True,
479
+ **generate_kwargs_new,
480
+ )
481
+
482
+ return outputs
SpiritSight-Agent-2B-base/special_tokens_map.json ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|action_start|>",
6
+ "<|action_end|>",
7
+ "<|interpreter|>",
8
+ "<|plugin|>",
9
+ "<img>",
10
+ "</img>",
11
+ "<IMG_CONTEXT>",
12
+ "<quad>",
13
+ "</quad>",
14
+ "<ref>",
15
+ "</ref>",
16
+ "<box>",
17
+ "</box>",
18
+ {
19
+ "content": "<node_separator>",
20
+ "lstrip": false,
21
+ "normalized": false,
22
+ "rstrip": false,
23
+ "single_word": false
24
+ }
25
+ ],
26
+ "bos_token": {
27
+ "content": "<s>",
28
+ "lstrip": false,
29
+ "normalized": false,
30
+ "rstrip": false,
31
+ "single_word": false
32
+ },
33
+ "eos_token": {
34
+ "content": "</s>",
35
+ "lstrip": false,
36
+ "normalized": false,
37
+ "rstrip": false,
38
+ "single_word": false
39
+ },
40
+ "pad_token": {
41
+ "content": "</s>",
42
+ "lstrip": false,
43
+ "normalized": false,
44
+ "rstrip": false,
45
+ "single_word": false
46
+ },
47
+ "unk_token": {
48
+ "content": "<unk>",
49
+ "lstrip": false,
50
+ "normalized": false,
51
+ "rstrip": false,
52
+ "single_word": false
53
+ }
54
+ }
SpiritSight-Agent-2B-base/tokenization_internlm2.py ADDED
@@ -0,0 +1,235 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
2
+ #
3
+ # This code is based on transformers/src/transformers/models/llama/tokenization_llama.py
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+
17
+ """Tokenization classes for InternLM."""
18
+ import os
19
+ from shutil import copyfile
20
+ from typing import Any, Dict, List, Optional, Tuple
21
+
22
+ import sentencepiece as spm
23
+ from transformers.tokenization_utils import PreTrainedTokenizer
24
+ from transformers.utils import logging
25
+
26
+ logger = logging.get_logger(__name__)
27
+
28
+ VOCAB_FILES_NAMES = {'vocab_file': './tokenizer.model'}
29
+
30
+ PRETRAINED_VOCAB_FILES_MAP = {}
31
+
32
+
33
+ # Modified from transformers.model.llama.tokenization_llama.LlamaTokenizer
34
+ class InternLM2Tokenizer(PreTrainedTokenizer):
35
+ """
36
+ Construct a InternLM2 tokenizer. Based on byte-level Byte-Pair-Encoding.
37
+
38
+ Args:
39
+ vocab_file (`str`):
40
+ Path to the vocabulary file.
41
+ """
42
+
43
+ vocab_files_names = VOCAB_FILES_NAMES
44
+ pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
45
+ model_input_names = ['input_ids', 'attention_mask']
46
+ _auto_class = 'AutoTokenizer'
47
+
48
+ def __init__(
49
+ self,
50
+ vocab_file,
51
+ unk_token='<unk>',
52
+ bos_token='<s>',
53
+ eos_token='</s>',
54
+ pad_token='</s>',
55
+ sp_model_kwargs: Optional[Dict[str, Any]] = None,
56
+ add_bos_token=True,
57
+ add_eos_token=False,
58
+ decode_with_prefix_space=False,
59
+ clean_up_tokenization_spaces=False,
60
+ **kwargs,
61
+ ):
62
+ self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
63
+ self.vocab_file = vocab_file
64
+ self.add_bos_token = add_bos_token
65
+ self.add_eos_token = add_eos_token
66
+ self.decode_with_prefix_space = decode_with_prefix_space
67
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
68
+ self.sp_model.Load(vocab_file)
69
+ self._no_prefix_space_tokens = None
70
+ super().__init__(
71
+ bos_token=bos_token,
72
+ eos_token=eos_token,
73
+ unk_token=unk_token,
74
+ pad_token=pad_token,
75
+ clean_up_tokenization_spaces=clean_up_tokenization_spaces,
76
+ **kwargs,
77
+ )
78
+
79
+ @property
80
+ def no_prefix_space_tokens(self):
81
+ if self._no_prefix_space_tokens is None:
82
+ vocab = self.convert_ids_to_tokens(list(range(self.vocab_size)))
83
+ self._no_prefix_space_tokens = {i for i, tok in enumerate(vocab) if not tok.startswith('▁')}
84
+ return self._no_prefix_space_tokens
85
+
86
+ @property
87
+ def vocab_size(self):
88
+ """Returns vocab size"""
89
+ return self.sp_model.get_piece_size()
90
+
91
+ @property
92
+ def bos_token_id(self) -> Optional[int]:
93
+ return self.sp_model.bos_id()
94
+
95
+ @property
96
+ def eos_token_id(self) -> Optional[int]:
97
+ return self.sp_model.eos_id()
98
+
99
+ def get_vocab(self):
100
+ """Returns vocab as a dict"""
101
+ vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
102
+ vocab.update(self.added_tokens_encoder)
103
+ return vocab
104
+
105
+ def _tokenize(self, text):
106
+ """Returns a tokenized string."""
107
+ return self.sp_model.encode(text, out_type=str)
108
+
109
+ def _convert_token_to_id(self, token):
110
+ """Converts a token (str) in an id using the vocab."""
111
+ return self.sp_model.piece_to_id(token)
112
+
113
+ def _convert_id_to_token(self, index):
114
+ """Converts an index (integer) in a token (str) using the vocab."""
115
+ token = self.sp_model.IdToPiece(index)
116
+ return token
117
+
118
+ def _maybe_add_prefix_space(self, tokens, decoded):
119
+ if tokens and tokens[0] not in self.no_prefix_space_tokens:
120
+ return ' ' + decoded
121
+ else:
122
+ return decoded
123
+
124
+ def convert_tokens_to_string(self, tokens):
125
+ """Converts a sequence of tokens (string) in a single string."""
126
+ current_sub_tokens = []
127
+ out_string = ''
128
+ prev_is_special = False
129
+ for token in tokens:
130
+ # make sure that special tokens are not decoded using sentencepiece model
131
+ if token in self.all_special_tokens:
132
+ if not prev_is_special:
133
+ out_string += ' '
134
+ out_string += self.sp_model.decode(current_sub_tokens) + token
135
+ prev_is_special = True
136
+ current_sub_tokens = []
137
+ else:
138
+ current_sub_tokens.append(token)
139
+ prev_is_special = False
140
+ out_string += self.sp_model.decode(current_sub_tokens)
141
+ out_string = self.clean_up_tokenization(out_string)
142
+ out_string = self._maybe_add_prefix_space(tokens=tokens, decoded=out_string)
143
+ return out_string[1:]
144
+
145
+ def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
146
+ """
147
+ Save the vocabulary and special tokens file to a directory.
148
+
149
+ Args:
150
+ save_directory (`str`):
151
+ The directory in which to save the vocabulary.
152
+
153
+ Returns:
154
+ `Tuple(str)`: Paths to the files saved.
155
+ """
156
+ if not os.path.isdir(save_directory):
157
+ logger.error(f'Vocabulary path ({save_directory}) should be a directory')
158
+ return
159
+ out_vocab_file = os.path.join(
160
+ save_directory, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']
161
+ )
162
+
163
+ if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
164
+ copyfile(self.vocab_file, out_vocab_file)
165
+ elif not os.path.isfile(self.vocab_file):
166
+ with open(out_vocab_file, 'wb') as fi:
167
+ content_spiece_model = self.sp_model.serialized_model_proto()
168
+ fi.write(content_spiece_model)
169
+
170
+ return (out_vocab_file,)
171
+
172
+ def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
173
+ if self.add_bos_token:
174
+ bos_token_ids = [self.bos_token_id]
175
+ else:
176
+ bos_token_ids = []
177
+
178
+ output = bos_token_ids + token_ids_0
179
+
180
+ if token_ids_1 is not None:
181
+ output = output + token_ids_1
182
+
183
+ if self.add_eos_token:
184
+ output = output + [self.eos_token_id]
185
+
186
+ return output
187
+
188
+ def get_special_tokens_mask(
189
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
190
+ ) -> List[int]:
191
+ """
192
+ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
193
+ special tokens using the tokenizer `prepare_for_model` method.
194
+
195
+ Args:
196
+ token_ids_0 (`List[int]`):
197
+ List of IDs.
198
+ token_ids_1 (`List[int]`, *optional*):
199
+ Optional second list of IDs for sequence pairs.
200
+ already_has_special_tokens (`bool`, *optional*, defaults to `False`):
201
+ Whether or not the token list is already formatted with special tokens for the model.
202
+
203
+ Returns:
204
+ `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
205
+ """
206
+ if already_has_special_tokens:
207
+ return super().get_special_tokens_mask(
208
+ token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
209
+ )
210
+
211
+ if token_ids_1 is None:
212
+ return [1] + ([0] * len(token_ids_0)) + [1]
213
+ return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
214
+
215
+ def create_token_type_ids_from_sequences(
216
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
217
+ ) -> List[int]:
218
+ """
219
+ Create a mask from the two sequences passed to be used in a sequence-pair classification task. T5 does not make
220
+ use of token type ids, therefore a list of zeros is returned.
221
+
222
+ Args:
223
+ token_ids_0 (`List[int]`):
224
+ List of IDs.
225
+ token_ids_1 (`List[int]`, *optional*):
226
+ Optional second list of IDs for sequence pairs.
227
+
228
+ Returns:
229
+ `List[int]`: List of zeros.
230
+ """
231
+ eos = [self.eos_token_id]
232
+
233
+ if token_ids_1 is None:
234
+ return len(token_ids_0 + eos) * [0]
235
+ return len(token_ids_0 + eos + token_ids_1 + eos) * [0]
SpiritSight-Agent-2B-base/tokenization_internlm2_fast.py ADDED
@@ -0,0 +1,211 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
2
+ #
3
+ # This code is based on transformers/src/transformers/models/llama/tokenization_llama_fast.py
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+
17
+ """Tokenization Fast class for InternLM."""
18
+ import os
19
+ from shutil import copyfile
20
+ from typing import Any, Dict, Optional, Tuple
21
+
22
+ from tokenizers import Tokenizer, decoders, normalizers, processors
23
+ from tokenizers.models import BPE
24
+ from transformers.convert_slow_tokenizer import (SLOW_TO_FAST_CONVERTERS,
25
+ SentencePieceExtractor,
26
+ SpmConverter)
27
+ from transformers.tokenization_utils_fast import PreTrainedTokenizerFast
28
+ from transformers.utils import logging
29
+
30
+ from .tokenization_internlm2 import InternLM2Tokenizer
31
+
32
+ logger = logging.get_logger(__name__)
33
+
34
+ VOCAB_FILES_NAMES = {'vocab_file': './tokenizer.model'}
35
+
36
+
37
+ # Modified from transformers.convert_slow_tokenizer.LlamaConverter
38
+ class InternLM2Converter(SpmConverter):
39
+ handle_byte_fallback = True
40
+
41
+ def vocab(self, proto):
42
+ vocab = [
43
+ ('<unk>', 0.0),
44
+ ('<s>', 0.0),
45
+ ('</s>', 0.0),
46
+ ]
47
+ vocab += [(piece.piece, piece.score) for piece in proto.pieces[3:]]
48
+ return vocab
49
+
50
+ def unk_id(self, proto):
51
+ unk_id = 0
52
+ return unk_id
53
+
54
+ def decoder(self, replacement, add_prefix_space):
55
+ return decoders.Sequence(
56
+ [
57
+ decoders.Replace('▁', ' '),
58
+ decoders.ByteFallback(),
59
+ decoders.Fuse(),
60
+ decoders.Strip(content=' ', left=1),
61
+ ]
62
+ )
63
+
64
+ def tokenizer(self, proto):
65
+ model_type = proto.trainer_spec.model_type
66
+ vocab_scores = self.vocab(proto)
67
+ # special tokens
68
+ added_tokens = self.original_tokenizer.added_tokens_decoder
69
+ for i in range(len(vocab_scores)):
70
+ piece, score = vocab_scores[i]
71
+ if i in added_tokens:
72
+ vocab_scores[i] = (added_tokens[i].content, score)
73
+ if model_type == 1:
74
+ raise RuntimeError('InternLM2 is supposed to be a BPE model!')
75
+
76
+ elif model_type == 2:
77
+ _, merges = SentencePieceExtractor(self.original_tokenizer.vocab_file).extract(vocab_scores)
78
+ bpe_vocab = {word: i for i, (word, _score) in enumerate(vocab_scores)}
79
+ tokenizer = Tokenizer(
80
+ BPE(bpe_vocab, merges, unk_token=proto.trainer_spec.unk_piece, fuse_unk=True, byte_fallback=True)
81
+ )
82
+ tokenizer.add_special_tokens(
83
+ [ added_token for index, added_token in added_tokens.items()]
84
+ )
85
+ else:
86
+ raise Exception(
87
+ "You're trying to run a `Unigram` model but you're file was trained with a different algorithm"
88
+ )
89
+
90
+ return tokenizer
91
+
92
+ def normalizer(self, proto):
93
+ normalizers_list = []
94
+ if proto.normalizer_spec.add_dummy_prefix:
95
+ normalizers_list.append(normalizers.Prepend(prepend='▁'))
96
+ normalizers_list.append(normalizers.Replace(pattern=' ', content='▁'))
97
+ return normalizers.Sequence(normalizers_list)
98
+
99
+ def pre_tokenizer(self, replacement, add_prefix_space):
100
+ return None
101
+
102
+
103
+ SLOW_TO_FAST_CONVERTERS['InternLM2Tokenizer'] = InternLM2Converter
104
+
105
+
106
+ # Modified from transformers.model.llama.tokenization_llama_fast.LlamaTokenizerFast -> InternLM2TokenizerFast
107
+ class InternLM2TokenizerFast(PreTrainedTokenizerFast):
108
+ vocab_files_names = VOCAB_FILES_NAMES
109
+ slow_tokenizer_class = InternLM2Tokenizer
110
+ padding_side = 'left'
111
+ model_input_names = ['input_ids', 'attention_mask']
112
+ _auto_class = 'AutoTokenizer'
113
+
114
+ def __init__(
115
+ self,
116
+ vocab_file,
117
+ unk_token='<unk>',
118
+ bos_token='<s>',
119
+ eos_token='</s>',
120
+ pad_token='</s>',
121
+ sp_model_kwargs: Optional[Dict[str, Any]] = None,
122
+ add_bos_token=True,
123
+ add_eos_token=False,
124
+ decode_with_prefix_space=False,
125
+ clean_up_tokenization_spaces=False,
126
+ **kwargs,
127
+ ):
128
+ super().__init__(
129
+ vocab_file=vocab_file,
130
+ unk_token=unk_token,
131
+ bos_token=bos_token,
132
+ eos_token=eos_token,
133
+ pad_token=pad_token,
134
+ sp_model_kwargs=sp_model_kwargs,
135
+ add_bos_token=add_bos_token,
136
+ add_eos_token=add_eos_token,
137
+ decode_with_prefix_space=decode_with_prefix_space,
138
+ clean_up_tokenization_spaces=clean_up_tokenization_spaces,
139
+ **kwargs,
140
+ )
141
+ self._add_bos_token = add_bos_token
142
+ self._add_eos_token = add_eos_token
143
+ self.update_post_processor()
144
+ self.vocab_file = vocab_file
145
+
146
+ @property
147
+ def can_save_slow_tokenizer(self) -> bool:
148
+ return os.path.isfile(self.vocab_file) if self.vocab_file else False
149
+
150
+ def update_post_processor(self):
151
+ """
152
+ Updates the underlying post processor with the current `bos_token` and `eos_token`.
153
+ """
154
+ bos = self.bos_token
155
+ bos_token_id = self.bos_token_id
156
+ if bos is None and self.add_bos_token:
157
+ raise ValueError('add_bos_token = True but bos_token = None')
158
+
159
+ eos = self.eos_token
160
+ eos_token_id = self.eos_token_id
161
+ if eos is None and self.add_eos_token:
162
+ raise ValueError('add_eos_token = True but eos_token = None')
163
+
164
+ single = f"{(bos+':0 ') if self.add_bos_token else ''}$A:0{(' '+eos+':0') if self.add_eos_token else ''}"
165
+ pair = f"{single}{(' '+bos+':1') if self.add_bos_token else ''} $B:1{(' '+eos+':1') if self.add_eos_token else ''}"
166
+
167
+ special_tokens = []
168
+ if self.add_bos_token:
169
+ special_tokens.append((bos, bos_token_id))
170
+ if self.add_eos_token:
171
+ special_tokens.append((eos, eos_token_id))
172
+ self._tokenizer.post_processor = processors.TemplateProcessing(
173
+ single=single, pair=pair, special_tokens=special_tokens
174
+ )
175
+
176
+ @property
177
+ def add_eos_token(self):
178
+ return self._add_eos_token
179
+
180
+ @property
181
+ def add_bos_token(self):
182
+ return self._add_bos_token
183
+
184
+ @add_eos_token.setter
185
+ def add_eos_token(self, value):
186
+ self._add_eos_token = value
187
+ self.update_post_processor()
188
+
189
+ @add_bos_token.setter
190
+ def add_bos_token(self, value):
191
+ self._add_bos_token = value
192
+ self.update_post_processor()
193
+
194
+ def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
195
+ if not self.can_save_slow_tokenizer:
196
+ raise ValueError(
197
+ 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow '
198
+ 'tokenizer.'
199
+ )
200
+
201
+ if not os.path.isdir(save_directory):
202
+ logger.error(f'Vocabulary path ({save_directory}) should be a directory')
203
+ return
204
+ out_vocab_file = os.path.join(
205
+ save_directory, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']
206
+ )
207
+
208
+ if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
209
+ copyfile(self.vocab_file, out_vocab_file)
210
+
211
+ return (out_vocab_file,)
SpiritSight-Agent-2B-base/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f868398fc4e05ee1e8aeba95ddf18ddcc45b8bce55d5093bead5bbf80429b48b
3
+ size 1477754
SpiritSight-Agent-2B-base/tokenizer_config.json ADDED
@@ -0,0 +1,188 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<unk>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<s>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "92538": {
28
+ "content": "<|plugin|>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "92539": {
36
+ "content": "<|interpreter|>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "92540": {
44
+ "content": "<|action_end|>",
45
+ "lstrip": false,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ },
51
+ "92541": {
52
+ "content": "<|action_start|>",
53
+ "lstrip": false,
54
+ "normalized": false,
55
+ "rstrip": false,
56
+ "single_word": false,
57
+ "special": true
58
+ },
59
+ "92542": {
60
+ "content": "<|im_end|>",
61
+ "lstrip": false,
62
+ "normalized": false,
63
+ "rstrip": false,
64
+ "single_word": false,
65
+ "special": true
66
+ },
67
+ "92543": {
68
+ "content": "<|im_start|>",
69
+ "lstrip": false,
70
+ "normalized": false,
71
+ "rstrip": false,
72
+ "single_word": false,
73
+ "special": true
74
+ },
75
+ "92544": {
76
+ "content": "<img>",
77
+ "lstrip": false,
78
+ "normalized": false,
79
+ "rstrip": false,
80
+ "single_word": false,
81
+ "special": true
82
+ },
83
+ "92545": {
84
+ "content": "</img>",
85
+ "lstrip": false,
86
+ "normalized": false,
87
+ "rstrip": false,
88
+ "single_word": false,
89
+ "special": true
90
+ },
91
+ "92546": {
92
+ "content": "<IMG_CONTEXT>",
93
+ "lstrip": false,
94
+ "normalized": false,
95
+ "rstrip": false,
96
+ "single_word": false,
97
+ "special": true
98
+ },
99
+ "92547": {
100
+ "content": "<quad>",
101
+ "lstrip": false,
102
+ "normalized": false,
103
+ "rstrip": false,
104
+ "single_word": false,
105
+ "special": true
106
+ },
107
+ "92548": {
108
+ "content": "</quad>",
109
+ "lstrip": false,
110
+ "normalized": false,
111
+ "rstrip": false,
112
+ "single_word": false,
113
+ "special": true
114
+ },
115
+ "92549": {
116
+ "content": "<ref>",
117
+ "lstrip": false,
118
+ "normalized": false,
119
+ "rstrip": false,
120
+ "single_word": false,
121
+ "special": true
122
+ },
123
+ "92550": {
124
+ "content": "</ref>",
125
+ "lstrip": false,
126
+ "normalized": false,
127
+ "rstrip": false,
128
+ "single_word": false,
129
+ "special": true
130
+ },
131
+ "92551": {
132
+ "content": "<box>",
133
+ "lstrip": false,
134
+ "normalized": false,
135
+ "rstrip": false,
136
+ "single_word": false,
137
+ "special": true
138
+ },
139
+ "92552": {
140
+ "content": "</box>",
141
+ "lstrip": false,
142
+ "normalized": false,
143
+ "rstrip": false,
144
+ "single_word": false,
145
+ "special": true
146
+ },
147
+ "92553": {
148
+ "content": "<node_separator>",
149
+ "lstrip": false,
150
+ "normalized": false,
151
+ "rstrip": false,
152
+ "single_word": false,
153
+ "special": true
154
+ }
155
+ },
156
+ "additional_special_tokens": [
157
+ "<|im_start|>",
158
+ "<|im_end|>",
159
+ "<|action_start|>",
160
+ "<|action_end|>",
161
+ "<|interpreter|>",
162
+ "<|plugin|>",
163
+ "<img>",
164
+ "</img>",
165
+ "<IMG_CONTEXT>",
166
+ "<quad>",
167
+ "</quad>",
168
+ "<ref>",
169
+ "</ref>",
170
+ "<box>",
171
+ "</box>",
172
+ "<node_separator>"
173
+ ],
174
+ "auto_map": {
175
+ "AutoTokenizer": [
176
+ "tokenization_internlm2.InternLM2Tokenizer",
177
+ null
178
+ ]
179
+ },
180
+ "bos_token": "<s>",
181
+ "chat_template": "{{ bos_token }}{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
182
+ "clean_up_tokenization_spaces": false,
183
+ "eos_token": "</s>",
184
+ "model_max_length": 2048,
185
+ "pad_token": "</s>",
186
+ "tokenizer_class": "InternLM2Tokenizer",
187
+ "unk_token": "<unk>"
188
+ }
image.png ADDED
infer_SSAgent-2B.py ADDED
@@ -0,0 +1,185 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import re
2
+ import torch
3
+ import torchvision.transforms as T
4
+ from PIL import Image
5
+ from torchvision.transforms.functional import InterpolationMode
6
+ from transformers import AutoModel, AutoTokenizer
7
+
8
+
9
+ IMAGENET_MEAN = (0.485, 0.456, 0.406)
10
+ IMAGENET_STD = (0.229, 0.224, 0.225)
11
+
12
+ def build_transform(is_train, input_size, pad2square=False, normalize_type='imagenet'):
13
+ if normalize_type == 'imagenet':
14
+ MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
15
+ else:
16
+ raise NotImplementedError
17
+ if is_train: # use data augumentation
18
+ transform = T.Compose([
19
+ T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
20
+ T.RandomResizedCrop(input_size, scale=(0.8, 1.0), ratio=(3. / 4., 4. / 3.),
21
+ interpolation=InterpolationMode.BICUBIC),
22
+ T.ToTensor(),
23
+ T.Normalize(mean=MEAN, std=STD)
24
+ ])
25
+ else:
26
+ transform = T.Compose([
27
+ T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
28
+ T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
29
+ T.ToTensor(),
30
+ T.Normalize(mean=MEAN, std=STD)
31
+ ])
32
+
33
+ return transform
34
+
35
+ def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
36
+ best_ratio_diff = float('inf')
37
+ best_ratio = (1, 1)
38
+ area = width * height
39
+ for ratio in target_ratios:
40
+ target_aspect_ratio = ratio[0] / ratio[1]
41
+ ratio_diff = abs(aspect_ratio - target_aspect_ratio)
42
+ if ratio_diff < best_ratio_diff:
43
+ best_ratio_diff = ratio_diff
44
+ best_ratio = ratio
45
+ elif ratio_diff == best_ratio_diff:
46
+ if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
47
+ best_ratio = ratio
48
+ # print(f'width: {width}, height: {height}, best_ratio: {best_ratio}')
49
+ return best_ratio
50
+
51
+ def dynamic_preprocess(image, min_num=1, max_num=6, image_size=448, use_thumbnail=False):
52
+ orig_width, orig_height = image.size
53
+ aspect_ratio = orig_width / orig_height
54
+
55
+ # calculate the existing image aspect ratio
56
+ target_ratios = set(
57
+ (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
58
+ i * j <= max_num and i * j >= min_num)
59
+ target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
60
+
61
+ # find the closest aspect ratio to the target
62
+ target_aspect_ratio = find_closest_aspect_ratio(
63
+ aspect_ratio, target_ratios, orig_width, orig_height, image_size)
64
+
65
+ # calculate the target width and height
66
+ target_width = image_size * target_aspect_ratio[0]
67
+ target_height = image_size * target_aspect_ratio[1]
68
+ blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
69
+
70
+ # resize the image
71
+ resized_img = image.resize((target_width, target_height))
72
+ processed_images = []
73
+ for i in range(blocks):
74
+ box = (
75
+ (i % (target_width // image_size)) * image_size,
76
+ (i // (target_width // image_size)) * image_size,
77
+ ((i % (target_width // image_size)) + 1) * image_size,
78
+ ((i // (target_width // image_size)) + 1) * image_size
79
+ )
80
+ # split the image
81
+ split_img = resized_img.crop(box)
82
+ processed_images.append(split_img)
83
+ assert len(processed_images) == blocks
84
+ if use_thumbnail and len(processed_images) != 1:
85
+ thumbnail_img = image.resize((image_size, image_size))
86
+ processed_images.append(thumbnail_img)
87
+ return processed_images, target_aspect_ratio
88
+
89
+ def image_process(image_path, config):
90
+ image = Image.open(image_path).convert('RGB')
91
+ transform = build_transform(is_train=False, input_size=config.vision_config.image_size,
92
+ pad2square=config.pad2square, normalize_type='imagenet')
93
+ if config.dynamic_image_size:
94
+ images, target_aspect_ratio = dynamic_preprocess(image, min_num=config.min_dynamic_patch, max_num=config.max_dynamic_patch,
95
+ image_size=config.vision_config.image_size, use_thumbnail=config.use_thumbnail)
96
+ else:
97
+ images = [image]
98
+ pixel_values = [transform(image) for image in images]
99
+ pixel_values = torch.stack(pixel_values)
100
+
101
+ return pixel_values.to(torch.bfloat16).cuda(), torch.tensor([[target_aspect_ratio[0], target_aspect_ratio[1]]], dtype=torch.long)
102
+
103
+ def parse_block_pos(str_, target_aspect_ratio):
104
+ block_num_w, block_num_h = target_aspect_ratio[0][0], target_aspect_ratio[0][1]
105
+ action, location, direction, location_or_text = None, None, None, None
106
+ str_ = str_.strip()
107
+ match = re.match(r'^(.*?)\((.*?)\)$', str_)
108
+
109
+ if match:
110
+ action, location_or_text = match.groups()
111
+
112
+ if action == 'CLICK':
113
+ match = re.match(r'^\[(\d{1}), (\d{3}), (\d{3})\].*?$', location_or_text)
114
+
115
+ if match:
116
+ block_idx, cx, cy = match.groups()
117
+
118
+ block_idx = int(block_idx)
119
+ cx = int(cx)
120
+ cy = int(cy)
121
+
122
+ cx += (block_idx % block_num_w) * 1000
123
+ cy += (block_idx // block_num_w) * 1000
124
+ cx /= block_num_w * 1000
125
+ cy /= block_num_h * 1000
126
+
127
+ location = [cx, cy]
128
+ else:
129
+ print(location_or_text)
130
+
131
+ elif action.startswith('SWIPE_'):
132
+ action, direction = action.split('_', 1)
133
+
134
+ return {
135
+ 'action': action,
136
+ 'location': location,
137
+ 'direction': direction,
138
+ 'content': location_or_text
139
+ }
140
+
141
+ question_template = '''## Task: {task}
142
+ ## History Actions:
143
+ {history}
144
+ ## Action Space
145
+ 1. CLICK([block_index, cx, cy], "text")
146
+ 2. TYPE("text")
147
+ 3. PRESS_BACK()
148
+ 4. PRESS_HOME()
149
+ 5. PRESS_ENTER()
150
+ 6. SWIPE_UP()
151
+ 7. SWIPE_DOWN()
152
+ 8. SWIPE_LEFT()
153
+ 9. SWIPE_RIGHT()
154
+ 10. COMPLETED()
155
+ ## Requirements: Please infer the next action according to the Task and History Actions. Think step by step. Return with Image Description, Next Action Description and Action Code. The Action Code should follow the definition in the Action Space.'''
156
+
157
+
158
+ path = './SpiritSight-Agent-2B-base'
159
+ model = AutoModel.from_pretrained(
160
+ path,
161
+ torch_dtype=torch.bfloat16,
162
+ low_cpu_mem_usage=True,
163
+ # use_flash_attn=False,
164
+ trust_remote_code=True).eval().cuda()
165
+ tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)
166
+
167
+ task = "Go to search bar in Google Chrome then search for walmart."
168
+ history = ""
169
+ question = question_template.format(task=task, history=history)
170
+
171
+ image_path = './image.png'
172
+ pixel_values, target_aspect_ratio = image_process(image_path, model.config)
173
+ generation_config = dict(max_new_tokens=1024, do_sample=True)
174
+ response = model.chat(
175
+ tokenizer=tokenizer,
176
+ pixel_values=pixel_values,
177
+ question=question,
178
+ target_aspect_ratio=target_aspect_ratio,
179
+ generation_config=generation_config
180
+ )
181
+ print(response)
182
+
183
+ action_code_str = response.split()[-1]
184
+ action_code = parse_block_pos(action_code_str, target_aspect_ratio.cpu().numpy())
185
+ print(action_code)
requirements.txt ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ torch==2.0.1
2
+ torchvision==0.15.2
3
+ transformers==4.37.2
4
+ tokenizers==0.15.1
5
+ sentencepiece==0.1.99
6
+ shortuuid
7
+ accelerate
8
+ peft==0.10.0
9
+ bitsandbytes==0.41.0
10
+ pydantic<2,>=1
11
+ markdown2[all]
12
+ numpy<2
13
+ scikit-learn>=1.2.2
14
+ gradio==3.35.2
15
+ gradio_client==0.2.9
16
+ requests
17
+ httpx==0.24.0
18
+ uvicorn
19
+ fastapi
20
+ deepspeed>=0.9.5
21
+ einops==0.6.1
22
+ einops-exts==0.0.4
23
+ timm>=0.6.11
results.png ADDED
results2.png ADDED