This is NLLB-200 trained on buryat-russian language pairs. It translates from buryat to russian and vice-versa.

BLEU bxr-ru: 20, ru-bxr:13

Thanks to https://huggingface.co/slone/nllb-rus-tyv-v1 tutorial

!pip install sentencepiece transformers==4.33
from transformers import NllbTokenizer, AutoModelForSeq2SeqLM, AutoConfig
def fix_tokenizer(tokenizer, new_lang='bxr_Cyrl'):
    """ Add a new language token to the tokenizer vocabulary (this should be done each time after its initialization) """
    old_len = len(tokenizer) - int(new_lang in tokenizer.added_tokens_encoder)
    tokenizer.lang_code_to_id[new_lang] = old_len-1
    tokenizer.id_to_lang_code[old_len-1] = new_lang
    # always move "mask" to the last position
    tokenizer.fairseq_tokens_to_ids["<mask>"] = len(tokenizer.sp_model) + len(tokenizer.lang_code_to_id) + tokenizer.fairseq_offset

    tokenizer.fairseq_tokens_to_ids.update(tokenizer.lang_code_to_id)
    tokenizer.fairseq_ids_to_tokens = {v: k for k, v in tokenizer.fairseq_tokens_to_ids.items()}
    if new_lang not in tokenizer._additional_special_tokens:
        tokenizer._additional_special_tokens.append(new_lang)
    # clear the added token encoder; otherwise a new token may end up there by mistake
    tokenizer.added_tokens_encoder = {}
    tokenizer.added_tokens_decoder = {}
MODEL_URL = "SaranaAbidueva/nllb-200-bxr-ru"
model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_URL)
tokenizer = NllbTokenizer.from_pretrained(MODEL_URL, force_download=True)
fix_tokenizer(tokenizer)

def translate(text, src_lang='rus_Cyrl', tgt_lang='bxr_Cyrl', a=32, b=3, max_input_length=1024, num_beams=4, **kwargs):
    tokenizer.src_lang = src_lang
    tokenizer.tgt_lang = tgt_lang
    inputs = tokenizer(text, return_tensors='pt', padding=True, truncation=True, max_length=max_input_length)
    result = model.generate(
        **inputs.to(model.device),
        forced_bos_token_id=tokenizer.convert_tokens_to_ids(tgt_lang),
        max_new_tokens=int(a + b * inputs.input_ids.shape[1]),
        num_beams=num_beams,
        **kwargs
    )
    return tokenizer.batch_decode(result, skip_special_tokens=True)

translate("красная птица", src_lang='rus_Cyrl', tgt_lang='bxr_Cyrl')
Downloads last month
0
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train SaranaAbidueva/nllb-200-bxr-ru