File size: 2,280 Bytes
ce357e7
 
 
 
 
 
 
 
 
a2413d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cec509d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
license: mit
language:
- en
metrics:
- accuracy
base_model:
- google-bert/bert-base-uncased
pipeline_tag: text-classification
---
# **BERT for IT Support Ticket Classification**  
_A fine-tuned BERT model for classifying IT-related support tickets into predefined categories._  

## **Model Details**  
- **Model Name**: `bert-it-issue`  
- **Author**: [SalomonMetre13](https://huggingface.co/SalomonMetre13)  
- **Architecture**: BERT-based model fine-tuned for **IT support ticket classification**  
- **Task**: Text Classification (`text-classification`)  
- **Dataset**: Processed IT support tickets dataset (`all_tickets_processed_improved_v3.csv`)  
- **Labels**:
  - `0`: Hardware  
  - `1`: Access  
  - `2`: Miscellaneous  
  - `3`: HR Support  
  - `4`: Purchase  
  - `5`: Administrative rights  
  - `6`: Storage  
  - `7`: Internal Project  

## **Usage**  
You can use this model for **automatically classifying IT support requests** based on their content.  

### **Example Usage with Transformers (Python)**
```python
from transformers import pipeline

classifier = pipeline("text-classification", model="SalomonMetre13/bert-it-issue")

text = "I need a new laptop because mine stopped working."
prediction = classifier(text)

print(prediction)  # [{'label': 'Hardware', 'score': 0.97}]
```

### **Using Hugging Face API (cURL)**
```bash
curl -X POST "https://api-inference.huggingface.co/models/SalomonMetre13/bert-it-issue" \
     -H "Authorization: Bearer YOUR_HF_API_TOKEN" \
     -H "Content-Type: application/json" \
     -d '{"inputs": "I need access to my email account."}'
```

## **Performance**  
The model was trained and evaluated on a dataset of categorized IT support tickets, achieving **high accuracy on validation and test sets**.  

## **Applications**
- **Automated IT ticket classification**  
- **Helpdesk support systems**  
- **Chatbot integration for IT requests**  

## **Limitations**  
- May misclassify ambiguous requests.  
- Performance depends on how well the training data represents real-world IT tickets.  
- Doesn't handle multi-label classification (only assigns one category per ticket).  

## **Contributions & Feedback**  
Feel free to contribute by fine-tuning, reporting issues, or suggesting improvements! 🚀  

---