SalomonMetre13 commited on
Commit
a2413d2
·
verified ·
1 Parent(s): ce357e7

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +62 -1
README.md CHANGED
@@ -7,4 +7,65 @@ metrics:
7
  base_model:
8
  - google-bert/bert-base-uncased
9
  pipeline_tag: text-classification
10
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
  base_model:
8
  - google-bert/bert-base-uncased
9
  pipeline_tag: text-classification
10
+ ---
11
+ # **BERT for IT Support Ticket Classification**
12
+ _A fine-tuned BERT model for classifying IT-related support tickets into predefined categories._
13
+
14
+ ## **Model Details**
15
+ - **Model Name**: `bert-it-issue`
16
+ - **Author**: [SalomonMetre13](https://huggingface.co/SalomonMetre13)
17
+ - **Architecture**: BERT-based model fine-tuned for **IT support ticket classification**
18
+ - **Task**: Text Classification (`text-classification`)
19
+ - **Dataset**: Processed IT support tickets dataset (`all_tickets_processed_improved_v3.csv`)
20
+ - **Labels**:
21
+ - `0`: Hardware
22
+ - `1`: Access
23
+ - `2`: Miscellaneous
24
+ - `3`: HR Support
25
+ - `4`: Purchase
26
+ - `5`: Administrative rights
27
+ - `6`: Storage
28
+ - `7`: Internal Project
29
+
30
+ ## **Usage**
31
+ You can use this model for **automatically classifying IT support requests** based on their content.
32
+
33
+ ### **Example Usage with Transformers (Python)**
34
+ ```python
35
+ from transformers import pipeline
36
+
37
+ classifier = pipeline("text-classification", model="SalomonMetre13/bert-it-issue")
38
+
39
+ text = "I need a new laptop because mine stopped working."
40
+ prediction = classifier(text)
41
+
42
+ print(prediction) # [{'label': 'Hardware', 'score': 0.97}]
43
+ ```
44
+
45
+ ### **Using Hugging Face API (cURL)**
46
+ ```bash
47
+ curl -X POST "https://api-inference.huggingface.co/models/SalomonMetre13/bert-it-issue" \
48
+ -H "Authorization: Bearer YOUR_HF_API_TOKEN" \
49
+ -H "Content-Type: application/json" \
50
+ -d '{"inputs": "I need access to my email account."}'
51
+ ```
52
+
53
+ ## **Performance**
54
+ The model was trained and evaluated on a dataset of categorized IT support tickets, achieving **high accuracy on validation and test sets**.
55
+
56
+ ## **Applications**
57
+ - **Automated IT ticket classification**
58
+ - **Helpdesk support systems**
59
+ - **Chatbot integration for IT requests**
60
+
61
+ ## **Limitations**
62
+ - May misclassify ambiguous requests.
63
+ - Performance depends on how well the training data represents real-world IT tickets.
64
+ - Doesn't handle multi-label classification (only assigns one category per ticket).
65
+
66
+ ## **Contributions & Feedback**
67
+ Feel free to contribute by fine-tuning, reporting issues, or suggesting improvements! 🚀
68
+
69
+ ---
70
+
71
+ Would you like me to add anything specific, like **training details** or **dataset statistics**?