Salmamoori's picture
End of training
ee11e38 verified
metadata
license: mit
base_model: microsoft/MiniLM-L12-H384-uncased
tags:
  - Language
  - image-Emotion
  - miniLM
  - PyTorch
  - Trainer
  - SequenceClassification
  - WeightedLoss
  - CrossEntropyLoss
  - F1Score
  - HuggingFaceHub
  - generated_from_trainer
datasets:
  - emotion
metrics:
  - f1
model-index:
  - name: miniLM_finetuned_Emotion_2024_06_17
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: emotion
          type: emotion
          config: split
          split: validation
          args: split
        metrics:
          - name: F1
            type: f1
            value: 0.9349971922956838

miniLM_finetuned_Emotion_2024_06_17

This model is a fine-tuned version of microsoft/MiniLM-L12-H384-uncased on the emotion dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4059
  • F1: 0.9350

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss F1
1.3684 1.0 250 1.0416 0.5803
0.8635 2.0 500 0.6225 0.8729
0.5165 3.0 750 0.3755 0.9130
0.3319 4.0 1000 0.2792 0.9256
0.2494 5.0 1250 0.2474 0.9252
0.1914 6.0 1500 0.2182 0.9290
0.156 7.0 1750 0.2140 0.9307
0.1435 8.0 2000 0.1807 0.9351
0.1258 9.0 2250 0.1830 0.9353
0.1128 10.0 2500 0.1655 0.9404
0.1023 11.0 2750 0.1968 0.9339
0.0967 12.0 3000 0.1816 0.9333
0.0914 13.0 3250 0.1840 0.9338
0.0818 14.0 3500 0.2094 0.9316
0.0755 15.0 3750 0.1945 0.9345
0.0718 16.0 4000 0.2040 0.9325
0.0641 17.0 4250 0.2230 0.9369
0.0613 18.0 4500 0.2349 0.9332
0.0556 19.0 4750 0.2530 0.9249
0.0521 20.0 5000 0.2334 0.9376
0.0526 21.0 5250 0.2531 0.9306
0.0423 22.0 5500 0.2336 0.9383
0.039 23.0 5750 0.2848 0.9352
0.0435 24.0 6000 0.2955 0.9363
0.0371 25.0 6250 0.3075 0.9362
0.0338 26.0 6500 0.2910 0.9339
0.0319 27.0 6750 0.3133 0.9343
0.0305 28.0 7000 0.3106 0.9344
0.0254 29.0 7250 0.3155 0.9370
0.0288 30.0 7500 0.3310 0.9339
0.0228 31.0 7750 0.3463 0.9364
0.0224 32.0 8000 0.3618 0.9353
0.0207 33.0 8250 0.3720 0.9347
0.022 34.0 8500 0.3672 0.9374
0.0222 35.0 8750 0.3525 0.9388
0.0197 36.0 9000 0.3848 0.9384
0.0196 37.0 9250 0.3722 0.9369
0.0175 38.0 9500 0.3490 0.9350
0.0168 39.0 9750 0.3539 0.9365
0.0167 40.0 10000 0.3590 0.9391
0.0144 41.0 10250 0.3824 0.9382
0.0164 42.0 10500 0.3973 0.9322
0.0124 43.0 10750 0.3892 0.9372
0.012 44.0 11000 0.4102 0.9333
0.0142 45.0 11250 0.3921 0.9366
0.012 46.0 11500 0.3925 0.9361
0.0097 47.0 11750 0.3924 0.9360
0.0107 48.0 12000 0.3952 0.9330
0.0093 49.0 12250 0.4067 0.9360
0.0104 50.0 12500 0.4059 0.9350

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1