Add link to paper and training framework

#6
by nielsr HF staff - opened
Files changed (1) hide show
  1. README.md +38 -14
README.md CHANGED
@@ -1,16 +1,10 @@
1
  ---
2
- extra_gated_heading: Acknowledge to follow corresponding license to access the repository
3
- extra_gated_button_content: Agree and access repository
4
- extra_gated_fields:
5
- First Name: text
6
- Last Name: text
7
- Country: country
8
- Affiliation: text
9
- license: cc-by-nc-4.0
10
  datasets:
11
  - Salesforce/xlam-function-calling-60k
12
  language:
13
  - en
 
 
14
  pipeline_tag: text-generation
15
  tags:
16
  - function-calling
@@ -18,9 +12,16 @@ tags:
18
  - tool-use
19
  - mistral
20
  - pytorch
21
- library_name: transformers
 
 
 
 
 
 
22
  ---
23
 
 
24
  <p align="center">
25
  <img width="500px" alt="xLAM" src="https://huggingface.co/datasets/jianguozhang/logos/resolve/main/xlam-no-background.png">
26
  </p>
@@ -38,6 +39,8 @@ library_name: transformers
38
  Welcome to the xLAM model family! [Large Action Models (LAMs)](https://blog.salesforceairesearch.com/large-action-models/) are advanced large language models designed to enhance decision-making and translate user intentions into executable actions that interact with the world. LAMs autonomously plan and execute tasks to achieve specific goals, serving as the brains of AI agents. They have the potential to automate workflow processes across various domains, making them invaluable for a wide range of applications.
39
  **The model release is exclusively for research purposes. A new and enhanced version of xLAM will soon be available exclusively to customers on our Platform.**
40
 
 
 
41
  ## Table of Contents
42
  - [Model Series](#model-series)
43
  - [Repository Overview](#repository-overview)
@@ -188,15 +191,35 @@ def build_conversation_history_prompt(conversation_history: str):
188
  })
189
 
190
  history_string = json.dumps(parsed_history)
191
- return f"\n[BEGIN OF HISTORY STEPS]\n{history_string}\n[END OF HISTORY STEPS]\n"
 
 
 
 
192
 
193
 
194
  # Helper function to build the input prompt for our model
195
  def build_prompt(task_instruction: str, format_instruction: str, tools: list, query: str, conversation_history: list):
196
- prompt = f"[BEGIN OF TASK INSTRUCTION]\n{task_instruction}\n[END OF TASK INSTRUCTION]\n\n"
197
- prompt += f"[BEGIN OF AVAILABLE TOOLS]\n{json.dumps(xlam_format_tools)}\n[END OF AVAILABLE TOOLS]\n\n"
198
- prompt += f"[BEGIN OF FORMAT INSTRUCTION]\n{format_instruction}\n[END OF FORMAT INSTRUCTION]\n\n"
199
- prompt += f"[BEGIN OF QUERY]\n{query}\n[END OF QUERY]\n\n"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
200
 
201
  if len(conversation_history) > 0: prompt += build_conversation_history_prompt(conversation_history)
202
  return prompt
@@ -476,4 +499,5 @@ If you find this repo helpful, please consider to cite our papers:
476
  journal={arXiv preprint arXiv:2402.15506},
477
  year={2024}
478
  }
 
479
  ```
 
1
  ---
 
 
 
 
 
 
 
 
2
  datasets:
3
  - Salesforce/xlam-function-calling-60k
4
  language:
5
  - en
6
+ library_name: transformers
7
+ license: cc-by-nc-4.0
8
  pipeline_tag: text-generation
9
  tags:
10
  - function-calling
 
12
  - tool-use
13
  - mistral
14
  - pytorch
15
+ extra_gated_heading: Acknowledge to follow corresponding license to access the repository
16
+ extra_gated_button_content: Agree and access repository
17
+ extra_gated_fields:
18
+ First Name: text
19
+ Last Name: text
20
+ Country: country
21
+ Affiliation: text
22
  ---
23
 
24
+ ```markdown
25
  <p align="center">
26
  <img width="500px" alt="xLAM" src="https://huggingface.co/datasets/jianguozhang/logos/resolve/main/xlam-no-background.png">
27
  </p>
 
39
  Welcome to the xLAM model family! [Large Action Models (LAMs)](https://blog.salesforceairesearch.com/large-action-models/) are advanced large language models designed to enhance decision-making and translate user intentions into executable actions that interact with the world. LAMs autonomously plan and execute tasks to achieve specific goals, serving as the brains of AI agents. They have the potential to automate workflow processes across various domains, making them invaluable for a wide range of applications.
40
  **The model release is exclusively for research purposes. A new and enhanced version of xLAM will soon be available exclusively to customers on our Platform.**
41
 
42
+ Trained with [ActionStudio: A Lightweight Framework for Data and Training of Action Models](https://huggingface.co/papers/2503.22673).
43
+
44
  ## Table of Contents
45
  - [Model Series](#model-series)
46
  - [Repository Overview](#repository-overview)
 
191
  })
192
 
193
  history_string = json.dumps(parsed_history)
194
+ return f"
195
+ [BEGIN OF HISTORY STEPS]
196
+ {history_string}
197
+ [END OF HISTORY STEPS]
198
+ "
199
 
200
 
201
  # Helper function to build the input prompt for our model
202
  def build_prompt(task_instruction: str, format_instruction: str, tools: list, query: str, conversation_history: list):
203
+ prompt = f"[BEGIN OF TASK INSTRUCTION]
204
+ {task_instruction}
205
+ [END OF TASK INSTRUCTION]
206
+
207
+ "
208
+ prompt += f"[BEGIN OF AVAILABLE TOOLS]
209
+ {json.dumps(xlam_format_tools)}
210
+ [END OF AVAILABLE TOOLS]
211
+
212
+ "
213
+ prompt += f"[BEGIN OF FORMAT INSTRUCTION]
214
+ {format_instruction}
215
+ [END OF FORMAT INSTRUCTION]
216
+
217
+ "
218
+ prompt += f"[BEGIN OF QUERY]
219
+ {query}
220
+ [END OF QUERY]
221
+
222
+ "
223
 
224
  if len(conversation_history) > 0: prompt += build_conversation_history_prompt(conversation_history)
225
  return prompt
 
499
  journal={arXiv preprint arXiv:2402.15506},
500
  year={2024}
501
  }
502
+ ```
503
  ```