metadata
library_name: transformers
license: other
language:
- ja
π EvoLLM-JP-v1-7B
π€ Models | π Paper | π Blog | π¦ Twitter
EvoLLM-JP-v1-7B is a Japanese Math LLM by Evolutionary Model Merge.
Model Details
Model Description
EvoLLM-JP-v1-7B is a Japanese Math LLM, merged the following source models in the Parameter Space (PS) by Evolutionary Model Merge.
- Developed by: Sakana AI
- Model type: Autoregressive Language Model
- Language(s): Japanese
- License: MICROSOFT RESEARCH LICENSE TERMS
- Source models:
Model Sources
- Repository: SakanaAI/evolutionary-model-merge
- Paper: TODO
- Blog: TODO
Usage
Use the code below to get started with the model.
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
# 1. load model
device = "cuda" if torch.cuda.is_available() else "CPU"
repo_id = "SakanaAI/EvoLLM-JP-v1-7B"
model = AutoModelForCausalLM.from_pretrained(repo_id, torch_dtype="auto")
tokenizer = AutoTokenizer.from_pretrained(repo_id)
model.to(device)
# 2. prepare inputs
text = "ι’θ₯ΏεΌγ§ι’η½γεθ«γθ¨γ£γ¦γΏγ¦δΈγγγ"
messages = [
{"role": "system", "content": "γγͺγγ―ε½Ήη«γ€γεθ¦γγͺγγζ€ι²γγγ¦γγͺγγ’γ·γΉγΏγ³γγ§γγ"},
{"role": "user", "content": text},
]
inputs = tokenizer.apply_chat_template(messages, return_tensors="pt")
# 3. generate
output_ids = model.generate(**inputs.to(device))
output_ids = output_ids[:, inputs.input_ids.shape[1] :]
generated_text = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0]
print(generated_text)
Evaluation
We present the results on the MGSM-JA test set that compares the performance of the our evolved LLMs compared to the source LLMs. For details on the evaluation, please refer to Section 4.1 of the paper. If you want to reproduce the results, please see our Github repository.
Id. | Model | Type | Params | MGSM-JA (acc β ) |
---|---|---|---|---|
1 | Shisa Gamma 7B v1 | JA general | 7B | 9.6 |
2 | WizardMath 7B V1.1 | EN math | 7B | 18.4 |
3 | Abel 7B 002 | EN math | 7B | 30.0 |
4 | Arithmo2 Mistral 7B | EN math | 7B | 24.0 |
5 | EvoLLM-JP-v1-7B | 1+2+3 | 7B | 52.0 |
6 | EvoLLM-JP-A-v1-7B | 1+3+4 | 7B | 52.4 |
7 | EvoLLM-JP-v1-10B | 1 + 5 | 10B | 55.6 |
Acknowledgement
We would like to thank the developers of the source models for their contributions and for making their work available.
Citation
@misc{Sakana2024EvolutionaryModelMerge,
title = {Evolutionary Optimization of Model Merging Recipes},
author. = {Takuya Akiba and Makoto Shing and Yujin Tang and Qi Sun and David Ha},
year = {2024},
eprint = {TODO},
archivePrefix = {arXiv},
primaryClass = {cs.CV}
}