IndoBERT Sentiment Analysis
Model ini merupakan hasil fine-tuning dari indobenchmark/indobert-base-p1 untuk tugas klasifikasi sentimen dalam bahasa Indonesia.
✨ Dataset
Scrapping Twitter/X terkumpul sebanyak 15.027 tweet
✨ Proses Preprocessing
- Hapus Duplikat
- Cleaning Data
- Case Folding
- Normalisasi Kata
✨ Indonesia Sentimen Lexicon
by: Fajri Koto(GitHub @fajri91)
- Label Sentimen: Positive, Negative, Neutral
- Positive.tsv: 3610 kata positive
- Negative.tsv: 6608 kata negative
✨ Split Dataset
- Train : 80%
- Val : 10%
- Test : 10%
✨ Training Configuration Indobert
- set_seed : 42
- Model : indobenchmark/indobert-base-p1
- Max Seq Length: 256
- Batch Size : 32
- Num_workers : 2
- Optimizer : Adam
- Learning Rate : 2e-5
- Weigth_decay : 0.02
- Epochs : 5
Framework Versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Tokenizers 0.21.1
- Downloads last month
- 102
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for Sahron/sentiment-indobert1aa_model
Base model
indobenchmark/indobert-base-p1