distilbert-base-uncased-finetuned-emotion

This model is a fine-tuned version of distilbert-base-uncased on the emotion dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7264
  • Accuracy: 0.895
  • Balanced accuracy: 0.8746
  • F1: 0.8961

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy Balanced accuracy F1
0.001 1.0 25 0.7713 0.89 0.8807 0.8915
0.0069 2.0 50 0.7734 0.905 0.8906 0.9070
0.0019 3.0 75 0.8670 0.88 0.8749 0.8819
0.0012 4.0 100 0.7387 0.895 0.8806 0.8953
0.0002 5.0 125 0.7841 0.885 0.8649 0.8858
0.0002 6.0 150 0.7415 0.9 0.8753 0.9001
0.0002 7.0 175 0.7378 0.895 0.8719 0.8955
0.0002 8.0 200 0.7452 0.89 0.8711 0.8910
0.0002 9.0 225 0.7555 0.89 0.8787 0.8908
0.0001 10.0 250 0.7541 0.895 0.8822 0.8959
0.0001 11.0 275 0.7536 0.9 0.8857 0.9009
0.0001 12.0 300 0.7530 0.9 0.8857 0.9009
0.0001 13.0 325 0.7542 0.9 0.8857 0.9009
0.0001 14.0 350 0.7532 0.895 0.8746 0.8957
0.0002 15.0 375 0.8554 0.88 0.8424 0.8803
0.0001 16.0 400 0.7700 0.9 0.8867 0.9011
0.0001 17.0 425 0.7302 0.895 0.8746 0.8961
0.0001 18.0 450 0.7304 0.895 0.8746 0.8961
0.0001 19.0 475 0.7284 0.895 0.8746 0.8961
0.0001 20.0 500 0.7264 0.895 0.8746 0.8961

Framework versions

  • Transformers 4.38.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
5
Safetensors
Model size
67M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for SWiedemann/distilbert-base-uncased-finetuned-emotion

Finetuned
(8584)
this model

Dataset used to train SWiedemann/distilbert-base-uncased-finetuned-emotion

Evaluation results