speaker-segmentation-fine-tuned-testESLO28.04.25

This model is a fine-tuned version of pyannote/segmentation-3.0 on the ESLO dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8138
  • Model Preparation Time: 0.0045
  • Der: 0.5094
  • False Alarm: 0.1774
  • Missed Detection: 0.2335
  • Confusion: 0.0985

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Model Preparation Time Der False Alarm Missed Detection Confusion
0.844 1.0 300 0.8725 0.0045 0.5486 0.1957 0.2335 0.1194
0.7916 2.0 600 0.8553 0.0045 0.5364 0.1660 0.2702 0.1001
0.7781 3.0 900 0.8353 0.0045 0.5207 0.1773 0.2407 0.1028
0.7781 4.0 1200 0.8332 0.0045 0.5201 0.1821 0.2355 0.1024
0.7498 5.0 1500 0.8215 0.0045 0.5119 0.1859 0.2211 0.1049
0.759 6.0 1800 0.8238 0.0045 0.5179 0.1755 0.2428 0.0996
0.7531 7.0 2100 0.8164 0.0045 0.5109 0.1748 0.2355 0.1007
0.7327 8.0 2400 0.8203 0.0045 0.5093 0.1778 0.2314 0.1002
0.7452 9.0 2700 0.8123 0.0045 0.5076 0.1740 0.2372 0.0964
0.6994 10.0 3000 0.8138 0.0045 0.5094 0.1774 0.2335 0.0985

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.20.0
Downloads last month
43
Safetensors
Model size
1.47M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Rziane/speaker-segmentation-fine-tuned-testESLO28.04.25

Finetuned
(69)
this model