speaker-segmentation-fine-tuned-testESLO28.04.25
This model is a fine-tuned version of pyannote/segmentation-3.0 on the ESLO dataset. It achieves the following results on the evaluation set:
- Loss: 0.8138
- Model Preparation Time: 0.0045
- Der: 0.5094
- False Alarm: 0.1774
- Missed Detection: 0.2335
- Confusion: 0.0985
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Der | False Alarm | Missed Detection | Confusion |
---|---|---|---|---|---|---|---|---|
0.844 | 1.0 | 300 | 0.8725 | 0.0045 | 0.5486 | 0.1957 | 0.2335 | 0.1194 |
0.7916 | 2.0 | 600 | 0.8553 | 0.0045 | 0.5364 | 0.1660 | 0.2702 | 0.1001 |
0.7781 | 3.0 | 900 | 0.8353 | 0.0045 | 0.5207 | 0.1773 | 0.2407 | 0.1028 |
0.7781 | 4.0 | 1200 | 0.8332 | 0.0045 | 0.5201 | 0.1821 | 0.2355 | 0.1024 |
0.7498 | 5.0 | 1500 | 0.8215 | 0.0045 | 0.5119 | 0.1859 | 0.2211 | 0.1049 |
0.759 | 6.0 | 1800 | 0.8238 | 0.0045 | 0.5179 | 0.1755 | 0.2428 | 0.0996 |
0.7531 | 7.0 | 2100 | 0.8164 | 0.0045 | 0.5109 | 0.1748 | 0.2355 | 0.1007 |
0.7327 | 8.0 | 2400 | 0.8203 | 0.0045 | 0.5093 | 0.1778 | 0.2314 | 0.1002 |
0.7452 | 9.0 | 2700 | 0.8123 | 0.0045 | 0.5076 | 0.1740 | 0.2372 | 0.0964 |
0.6994 | 10.0 | 3000 | 0.8138 | 0.0045 | 0.5094 | 0.1774 | 0.2335 | 0.0985 |
Framework versions
- Transformers 4.45.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.20.0
- Downloads last month
- 43
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for Rziane/speaker-segmentation-fine-tuned-testESLO28.04.25
Base model
pyannote/segmentation-3.0