speaker-segmentation-ESLO-CAENNAIS28.04.25
This model is a fine-tuned version of pyannote/segmentation-3.0 on the CAENNAIS dataset. It achieves the following results on the evaluation set:
- Loss: 0.6832
- Model Preparation Time: 0.004
- Der: 0.2846
- False Alarm: 0.0902
- Missed Detection: 0.0839
- Confusion: 0.1105
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Der | False Alarm | Missed Detection | Confusion |
---|---|---|---|---|---|---|---|---|
0.7466 | 1.0 | 61 | 0.6336 | 0.004 | 0.2853 | 0.0872 | 0.0938 | 0.1043 |
0.6861 | 2.0 | 122 | 0.6770 | 0.004 | 0.2934 | 0.0876 | 0.0937 | 0.1122 |
0.6556 | 3.0 | 183 | 0.6686 | 0.004 | 0.2945 | 0.0880 | 0.0916 | 0.1149 |
0.6225 | 4.0 | 244 | 0.6746 | 0.004 | 0.2925 | 0.0820 | 0.0956 | 0.1149 |
0.627 | 5.0 | 305 | 0.6682 | 0.004 | 0.2912 | 0.0853 | 0.0905 | 0.1155 |
0.5885 | 6.0 | 366 | 0.6745 | 0.004 | 0.2913 | 0.0815 | 0.0909 | 0.1188 |
0.5649 | 7.0 | 427 | 0.6675 | 0.004 | 0.2847 | 0.0806 | 0.0916 | 0.1125 |
0.5478 | 8.0 | 488 | 0.6817 | 0.004 | 0.2831 | 0.0890 | 0.0838 | 0.1103 |
0.5282 | 9.0 | 549 | 0.6836 | 0.004 | 0.2852 | 0.0905 | 0.0839 | 0.1109 |
0.5361 | 10.0 | 610 | 0.6832 | 0.004 | 0.2846 | 0.0902 | 0.0839 | 0.1105 |
Framework versions
- Transformers 4.45.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.20.0
- Downloads last month
- 26
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for Rziane/speaker-segmentation-ESLO-CAENNAIS28.04.25
Base model
pyannote/segmentation-3.0