model.no1_expe.dia.1.A_data_ESLO_06.05.25
This model is a fine-tuned version of pyannote/segmentation-3.0 on the CAENNAIS dataset. It achieves the following results on the evaluation set:
- Loss: 0.7445
- Model Preparation Time: 0.004
- Der: 0.4569
- False Alarm: 0.1475
- Missed Detection: 0.2178
- Confusion: 0.0916
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 20
Training results
Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Der | False Alarm | Missed Detection | Confusion |
---|---|---|---|---|---|---|---|---|
0.8584 | 1.0 | 270 | 0.7939 | 0.004 | 0.4959 | 0.1382 | 0.2534 | 0.1042 |
0.8018 | 2.0 | 540 | 0.7538 | 0.004 | 0.4728 | 0.1353 | 0.2455 | 0.0919 |
0.7842 | 3.0 | 810 | 0.7547 | 0.004 | 0.4815 | 0.1657 | 0.2003 | 0.1155 |
0.7471 | 4.0 | 1080 | 0.7575 | 0.004 | 0.4750 | 0.1686 | 0.2022 | 0.1042 |
0.764 | 5.0 | 1350 | 0.7550 | 0.004 | 0.4673 | 0.1492 | 0.2237 | 0.0944 |
0.7684 | 6.0 | 1620 | 0.7544 | 0.004 | 0.4614 | 0.1459 | 0.2246 | 0.0910 |
0.7191 | 7.0 | 1890 | 0.7383 | 0.004 | 0.4587 | 0.1561 | 0.2133 | 0.0892 |
0.7204 | 8.0 | 2160 | 0.7347 | 0.004 | 0.4568 | 0.1504 | 0.2148 | 0.0916 |
0.7063 | 9.0 | 2430 | 0.7343 | 0.004 | 0.4586 | 0.1494 | 0.2188 | 0.0904 |
0.716 | 10.0 | 2700 | 0.7365 | 0.004 | 0.4622 | 0.1499 | 0.2203 | 0.0920 |
0.7117 | 11.0 | 2970 | 0.7410 | 0.004 | 0.4597 | 0.1437 | 0.2253 | 0.0907 |
0.7169 | 12.0 | 3240 | 0.7319 | 0.004 | 0.4526 | 0.1553 | 0.2039 | 0.0933 |
0.6566 | 13.0 | 3510 | 0.7381 | 0.004 | 0.4550 | 0.1518 | 0.2126 | 0.0907 |
0.6799 | 14.0 | 3780 | 0.7486 | 0.004 | 0.4564 | 0.1438 | 0.2230 | 0.0896 |
0.6755 | 15.0 | 4050 | 0.7425 | 0.004 | 0.4542 | 0.1500 | 0.2138 | 0.0904 |
0.6789 | 16.0 | 4320 | 0.7456 | 0.004 | 0.4572 | 0.1501 | 0.2140 | 0.0931 |
0.6793 | 17.0 | 4590 | 0.7425 | 0.004 | 0.4551 | 0.1467 | 0.2177 | 0.0907 |
0.672 | 18.0 | 4860 | 0.7445 | 0.004 | 0.4551 | 0.1479 | 0.2159 | 0.0914 |
0.69 | 19.0 | 5130 | 0.7442 | 0.004 | 0.4567 | 0.1473 | 0.2180 | 0.0914 |
0.7042 | 20.0 | 5400 | 0.7445 | 0.004 | 0.4569 | 0.1475 | 0.2178 | 0.0916 |
Framework versions
- Transformers 4.45.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.20.0
- Downloads last month
- 18
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support