dts_ESLO.06.05.25_exp.ft.dia.1.A_mdl.no2
This model is a fine-tuned version of pyannote/segmentation-3.0 on the CAENNAIS dataset. It achieves the following results on the evaluation set:
- Loss: 0.7678
- Model Preparation Time: 0.0043
- Der: 0.4560
- False Alarm: 0.1445
- Missed Detection: 0.2165
- Confusion: 0.0950
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 20
Training results
Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Der | False Alarm | Missed Detection | Confusion |
---|---|---|---|---|---|---|---|---|
0.8687 | 1.0 | 270 | 0.8003 | 0.0043 | 0.5137 | 0.1447 | 0.2577 | 0.1113 |
0.8032 | 2.0 | 540 | 0.7798 | 0.0043 | 0.5002 | 0.1203 | 0.2856 | 0.0943 |
0.7846 | 3.0 | 810 | 0.7556 | 0.0043 | 0.4809 | 0.1545 | 0.2251 | 0.1013 |
0.7547 | 4.0 | 1080 | 0.7515 | 0.0043 | 0.4625 | 0.1559 | 0.2046 | 0.1021 |
0.7571 | 5.0 | 1350 | 0.7644 | 0.0043 | 0.4757 | 0.1400 | 0.2389 | 0.0968 |
0.7751 | 6.0 | 1620 | 0.7725 | 0.0043 | 0.4773 | 0.1317 | 0.2519 | 0.0938 |
0.7187 | 7.0 | 1890 | 0.7781 | 0.0043 | 0.4726 | 0.1338 | 0.2455 | 0.0933 |
0.7351 | 8.0 | 2160 | 0.7491 | 0.0043 | 0.4640 | 0.1362 | 0.2408 | 0.0870 |
0.7112 | 9.0 | 2430 | 0.7530 | 0.0043 | 0.4610 | 0.1535 | 0.2129 | 0.0946 |
0.7275 | 10.0 | 2700 | 0.7666 | 0.0043 | 0.4597 | 0.1377 | 0.2329 | 0.0891 |
0.7159 | 11.0 | 2970 | 0.7624 | 0.0043 | 0.4567 | 0.1375 | 0.2314 | 0.0878 |
0.7201 | 12.0 | 3240 | 0.7474 | 0.0043 | 0.4598 | 0.1410 | 0.2271 | 0.0917 |
0.6565 | 13.0 | 3510 | 0.7511 | 0.0043 | 0.4579 | 0.1475 | 0.2137 | 0.0966 |
0.6864 | 14.0 | 3780 | 0.7658 | 0.0043 | 0.4636 | 0.1429 | 0.2278 | 0.0930 |
0.695 | 15.0 | 4050 | 0.7739 | 0.0043 | 0.4557 | 0.1459 | 0.2143 | 0.0955 |
0.6775 | 16.0 | 4320 | 0.7636 | 0.0043 | 0.4541 | 0.1467 | 0.2139 | 0.0935 |
0.6821 | 17.0 | 4590 | 0.7694 | 0.0043 | 0.4565 | 0.1444 | 0.2166 | 0.0955 |
0.6742 | 18.0 | 4860 | 0.7674 | 0.0043 | 0.4575 | 0.1441 | 0.2181 | 0.0952 |
0.693 | 19.0 | 5130 | 0.7672 | 0.0043 | 0.4557 | 0.1441 | 0.2168 | 0.0948 |
0.7177 | 20.0 | 5400 | 0.7678 | 0.0043 | 0.4560 | 0.1445 | 0.2165 | 0.0950 |
Framework versions
- Transformers 4.45.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.20.0
- Downloads last month
- 14
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support