anton-l's picture
anton-l HF staff
Upload README.md
57c6387
metadata
language:
  - mt
license: apache-2.0
tags:
  - automatic-speech-recognition
  - mozilla-foundation/common_voice_8_0
  - generated_from_trainer
  - mt
  - robust-speech-event
  - model_for_talk
  - hf-asr-leaderboard
datasets:
  - mozilla-foundation/common_voice_8_0
model-index:
  - name: wav2vec2-large-xls-r-1b-cv8-mt
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 8
          type: mozilla-foundation/common_voice_8_0
          args: mt
        metrics:
          - name: Test WER
            type: wer
            value: 17.57
          - name: Test CER
            type: cer
            value: 3.86
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Robust Speech Event - Dev Data
          type: speech-recognition-community-v2/dev_data
          args: mt
        metrics:
          - name: Test WER
            type: wer
            value: null
          - name: Test CER
            type: cer
            value: null

wav2vec2-large-xls-r-1b-cv8-mt

This model is a fine-tuned version of facebook/wav2vec2-xls-r-1b on the common_voice dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2210
  • Wer: 0.1974

Model description

Note: another version of this model is available with a KenLM 3gram model. This model performs better than this model. See https://huggingface.co/RuudVelo/wav2vec2-large-xls-r-1b-cv8-mt-lm

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following config and hyperparameters were used during training:

model = Wav2Vec2ForCTC.from_pretrained( "facebook/wav2vec2-xls-r-1b", attention_dropout=0.05, hidden_dropout=0.05, feat_proj_dropout=0.05, mask_time_prob=0.55, mask_feature_prob=0.10, layerdrop=0.05, ctc_zero_infinity=True, ctc_loss_reduction="mean", pad_token_id=processor.tokenizer.pad_token_id, vocab_size=len(processor.tokenizer), )

from transformers import TrainingArguments

training_args = TrainingArguments( output_dir=repo_name, group_by_length=True, per_device_train_batch_size=32, gradient_accumulation_steps=2, evaluation_strategy="steps", num_train_epochs=50, gradient_checkpointing=True, fp16=True, save_steps=400, eval_steps=400, logging_steps=400, learning_rate=5.5e-05, warmup_steps=500, save_total_limit=2, push_to_hub=True, report_to="tensorboard")

Training results

Training Loss Epoch Step Validation Loss Wer
3.4564 13.33 400 0.3783 0.3981
0.7931 26.66 800 0.2377 0.2298
0.5364 39.98 1200 0.2210 0.1974

Note that the test WER of 19.74 is different than the above reported 17.57. This was due to a bug which was found while processing files with an older version of the datasets library. The right library is listed below.

Framework versions

  • Transformers 4.17.0.dev0
  • Pytorch 1.10.2+cu102
  • Datasets 1.18.3
  • Tokenizers 0.11.0