Edit model card

wav2vec2-large-xls-r-1b-cv8-mt-lm

This model is a fine-tuned version of wav2vec2-large-xls-r-1b-cv8-mt-lm on the common_voice 8 dataset. It achieves the following results on the test set:

  • Loss: 0.2210
  • Wer: 0.1974

Note that the above test results come from the original model without LM (language model) which can be found at https://huggingface.co/RuudVelo/wav2vec2-large-xls-r-1b-cv8-mt. The results with the LM model can be found on the right side of this model card.

Model description

Model RuudVelo/wav2vec2-large-xls-r-1b-cv8-mt which has been improved with a KenLM 3-gram.

Intended uses & limitations

More information needed

Training and evaluation data

Common Voice 8 mt dataset has been used for the model

Training procedure

Training hyperparameters

The following config and hyperparameters were used during training: model = Wav2Vec2ForCTC.from_pretrained( "facebook/wav2vec2-xls-r-1b", attention_dropout=0.05, hidden_dropout=0.05, feat_proj_dropout=0.05, mask_time_prob=0.55, mask_feature_prob=0.10, layerdrop=0.05, ctc_zero_infinity=True, ctc_loss_reduction="mean", pad_token_id=processor.tokenizer.pad_token_id, vocab_size=len(processor.tokenizer), ) from transformers import TrainingArguments

training_args = TrainingArguments( output_dir=repo_name, group_by_length=True, per_device_train_batch_size=32, gradient_accumulation_steps=2, evaluation_strategy="steps", num_train_epochs=50, gradient_checkpointing=True, fp16=True, save_steps=400, eval_steps=400, logging_steps=400, learning_rate=5.5e-05, warmup_steps=500, save_total_limit=2, push_to_hub=True, report_to="tensorboard")

Framework versions

  • Transformers 4.16.0.dev0
  • Pytorch 1.10.1+cu102
  • Datasets 1.18.3
  • Tokenizers 0.11.0
Downloads last month
15
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train RuudVelo/wav2vec2-large-xls-r-1b-cv8-mt-lm

Evaluation results