|
--- |
|
license: apache-2.0 |
|
base_model: facebook/wav2vec2-lv-60-espeak-cv-ft |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- voxpopuli |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: wav2vec2-large-xls-r-300m-czech-colab-finetuned |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: voxpopuli |
|
type: voxpopuli |
|
config: cs |
|
split: test |
|
args: cs |
|
metrics: |
|
- name: Wer |
|
type: wer |
|
value: 0.6178421298458664 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# wav2vec2-large-xls-r-300m-czech-colab-finetuned |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-lv-60-espeak-cv-ft](https://huggingface.co/facebook/wav2vec2-lv-60-espeak-cv-ft) on the voxpopuli dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 624.5939 |
|
- Wer: 0.6178 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0003 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 16 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 50 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:| |
|
| 3007.3212 | 3.51 | 100 | 1006.7374 | 0.9865 | |
|
| 354.3011 | 7.02 | 200 | 563.6080 | 0.9980 | |
|
| 211.5289 | 10.53 | 300 | 599.5796 | 0.9165 | |
|
| 187.8653 | 14.04 | 400 | 447.1478 | 0.8099 | |
|
| 163.1056 | 17.54 | 500 | 430.5204 | 0.6875 | |
|
| 143.0342 | 21.05 | 600 | 413.8947 | 0.6850 | |
|
| 116.0388 | 24.56 | 700 | 435.5743 | 0.6737 | |
|
| 95.5554 | 28.07 | 800 | 490.6329 | 0.6339 | |
|
| 80.6966 | 31.58 | 900 | 493.9658 | 0.6344 | |
|
| 68.7335 | 35.09 | 1000 | 525.7507 | 0.6263 | |
|
| 58.3269 | 38.6 | 1100 | 582.5747 | 0.6128 | |
|
| 54.3181 | 42.11 | 1200 | 600.8087 | 0.6308 | |
|
| 48.5287 | 45.61 | 1300 | 594.6959 | 0.6112 | |
|
| 43.041 | 49.12 | 1400 | 624.5939 | 0.6178 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.2 |
|
- Pytorch 2.1.0+cu118 |
|
- Datasets 2.15.0 |
|
- Tokenizers 0.15.0 |
|
|