Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: unsloth/Qwen2.5-1.5B-Instruct
bf16: true
chat_template: llama3
cosine_min_lr_ratio: 0.3
dataset_prepared_path: null
datasets:
- data_files:
  - a88e78e41748bf83_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/a88e78e41748bf83_train_data.json
  type:
    field_instruction: prompt
    field_output: generation
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 100
eval_table_size: null
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: Romain-XV/fb136667-94f4-4222-917a-d970c866edc3
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.1
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 3947
micro_batch_size: 4
mlflow_experiment_name: /tmp/a88e78e41748bf83_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.04
wandb_entity: null
wandb_mode: online
wandb_name: 895387c3-0be7-49d8-a314-abeba9f636b4
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 895387c3-0be7-49d8-a314-abeba9f636b4
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

fb136667-94f4-4222-917a-d970c866edc3

This model is a fine-tuned version of unsloth/Qwen2.5-1.5B-Instruct on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7285

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 3947

Training results

Training Loss Epoch Step Validation Loss
1.8079 0.0005 1 1.7711
0.9176 0.0481 100 0.9042
0.8823 0.0963 200 0.8688
0.7735 0.1444 300 0.8444
0.8465 0.1926 400 0.8353
0.8342 0.2407 500 0.8236
0.8173 0.2888 600 0.8145
0.7584 0.3370 700 0.8094
0.8554 0.3851 800 0.8027
0.8138 0.4333 900 0.7981
0.7881 0.4814 1000 0.7917
0.842 0.5295 1100 0.7877
0.7291 0.5777 1200 0.7833
0.7927 0.6258 1300 0.7793
0.8393 0.6740 1400 0.7751
0.8374 0.7221 1500 0.7746
0.7801 0.7702 1600 0.7696
0.7769 0.8184 1700 0.7658
0.7168 0.8665 1800 0.7624
0.7109 0.9147 1900 0.7591
0.7169 0.9628 2000 0.7577
0.6319 1.0110 2100 0.7609
0.7444 1.0591 2200 0.7570
0.6964 1.1072 2300 0.7549
0.8156 1.1554 2400 0.7511
0.6715 1.2035 2500 0.7489
0.6032 1.2517 2600 0.7478
0.5837 1.2998 2700 0.7465
0.641 1.3479 2800 0.7438
0.7289 1.3961 2900 0.7430
0.7601 1.4442 3000 0.7404
0.7079 1.4924 3100 0.7381
0.7538 1.5405 3200 0.7365
0.7364 1.5886 3300 0.7352
0.7603 1.6368 3400 0.7343
0.5916 1.6849 3500 0.7315
0.6189 1.7331 3600 0.7309
0.5654 1.7812 3700 0.7292
0.7495 1.8293 3800 0.7290
0.6212 1.8775 3900 0.7285

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
4
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Romain-XV/fb136667-94f4-4222-917a-d970c866edc3

Base model

Qwen/Qwen2.5-1.5B
Adapter
(288)
this model