See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: unsloth/Qwen2.5-1.5B-Instruct
bf16: true
chat_template: llama3
cosine_min_lr_ratio: 0.3
dataset_prepared_path: null
datasets:
- data_files:
- a88e78e41748bf83_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/a88e78e41748bf83_train_data.json
type:
field_instruction: prompt
field_output: generation
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 100
eval_table_size: null
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: Romain-XV/fb136667-94f4-4222-917a-d970c866edc3
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.1
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 3947
micro_batch_size: 4
mlflow_experiment_name: /tmp/a88e78e41748bf83_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.04
wandb_entity: null
wandb_mode: online
wandb_name: 895387c3-0be7-49d8-a314-abeba9f636b4
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 895387c3-0be7-49d8-a314-abeba9f636b4
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
fb136667-94f4-4222-917a-d970c866edc3
This model is a fine-tuned version of unsloth/Qwen2.5-1.5B-Instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.7285
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 3947
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.8079 | 0.0005 | 1 | 1.7711 |
0.9176 | 0.0481 | 100 | 0.9042 |
0.8823 | 0.0963 | 200 | 0.8688 |
0.7735 | 0.1444 | 300 | 0.8444 |
0.8465 | 0.1926 | 400 | 0.8353 |
0.8342 | 0.2407 | 500 | 0.8236 |
0.8173 | 0.2888 | 600 | 0.8145 |
0.7584 | 0.3370 | 700 | 0.8094 |
0.8554 | 0.3851 | 800 | 0.8027 |
0.8138 | 0.4333 | 900 | 0.7981 |
0.7881 | 0.4814 | 1000 | 0.7917 |
0.842 | 0.5295 | 1100 | 0.7877 |
0.7291 | 0.5777 | 1200 | 0.7833 |
0.7927 | 0.6258 | 1300 | 0.7793 |
0.8393 | 0.6740 | 1400 | 0.7751 |
0.8374 | 0.7221 | 1500 | 0.7746 |
0.7801 | 0.7702 | 1600 | 0.7696 |
0.7769 | 0.8184 | 1700 | 0.7658 |
0.7168 | 0.8665 | 1800 | 0.7624 |
0.7109 | 0.9147 | 1900 | 0.7591 |
0.7169 | 0.9628 | 2000 | 0.7577 |
0.6319 | 1.0110 | 2100 | 0.7609 |
0.7444 | 1.0591 | 2200 | 0.7570 |
0.6964 | 1.1072 | 2300 | 0.7549 |
0.8156 | 1.1554 | 2400 | 0.7511 |
0.6715 | 1.2035 | 2500 | 0.7489 |
0.6032 | 1.2517 | 2600 | 0.7478 |
0.5837 | 1.2998 | 2700 | 0.7465 |
0.641 | 1.3479 | 2800 | 0.7438 |
0.7289 | 1.3961 | 2900 | 0.7430 |
0.7601 | 1.4442 | 3000 | 0.7404 |
0.7079 | 1.4924 | 3100 | 0.7381 |
0.7538 | 1.5405 | 3200 | 0.7365 |
0.7364 | 1.5886 | 3300 | 0.7352 |
0.7603 | 1.6368 | 3400 | 0.7343 |
0.5916 | 1.6849 | 3500 | 0.7315 |
0.6189 | 1.7331 | 3600 | 0.7309 |
0.5654 | 1.7812 | 3700 | 0.7292 |
0.7495 | 1.8293 | 3800 | 0.7290 |
0.6212 | 1.8775 | 3900 | 0.7285 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 4
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for Romain-XV/fb136667-94f4-4222-917a-d970c866edc3
Base model
Qwen/Qwen2.5-1.5B
Finetuned
Qwen/Qwen2.5-1.5B-Instruct
Finetuned
unsloth/Qwen2.5-1.5B-Instruct