See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: deepcogito/cogito-v1-preview-llama-70B
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 970ee7baa1630589_train_data.json
ds_type: json
format: custom
path: /workspace/axolotl/data/970ee7baa1630589_train_data.json
type:
field_input: prompt
field_instruction: instruction
field_output: response
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
device_map:
? ''
: 0,1,2,3,4,5,6,7
eval_max_new_tokens: 128
eval_strategy: 'no'
eval_table_size: null
flash_attention: true
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: Romain-XV/dd8a61e8-ea6d-4f4d-91e3-6d3b34c95a03
hub_repo: Romain-XV
hub_strategy: end
learning_rate: 0.0002
load_in_4bit: true
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 256
lora_dropout: 0.1
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 128
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
- o_proj
- down_proj
- up_proj
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 50
micro_batch_size: 1
mlflow_experiment_name: /workspace/axolotl/data/970ee7baa1630589_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 5
optimizer: adamw_torch_fused
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
sequence_len: 2048
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
use_rslora: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: deepcogito-cogito-v1-preview-llama-70B-5117c355
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: deepcogito-cogito-v1-preview-llama-70B-5117c355
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
dd8a61e8-ea6d-4f4d-91e3-6d3b34c95a03
This model is a fine-tuned version of deepcogito/cogito-v1-preview-llama-70B on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.4166
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 50
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.5396 | 0.0042 | 50 | 0.4166 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 11
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for Romain-XV/dd8a61e8-ea6d-4f4d-91e3-6d3b34c95a03
Base model
meta-llama/Llama-3.1-70B
Finetuned
deepcogito/cogito-v1-preview-llama-70B