Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: unsloth/Qwen2.5-1.5B-Instruct
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - 87f3c9b2656146bb_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/87f3c9b2656146bb_train_data.json
  type:
    field_input: statements
    field_instruction: quiz
    field_output: solution_text
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 4
eval_max_new_tokens: 128
eval_steps: 150
eval_table_size: null
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: Romain-XV/c9a25fed-0ee9-46e3-a648-22b9ee8890c4
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.3
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 7200
micro_batch_size: 2
mlflow_experiment_name: /tmp/87f3c9b2656146bb_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 150
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.04
wandb_entity: null
wandb_mode: online
wandb_name: 146c3328-3a36-49c9-a68a-1b82be7dcc55
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 146c3328-3a36-49c9-a68a-1b82be7dcc55
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

c9a25fed-0ee9-46e3-a648-22b9ee8890c4

This model is a fine-tuned version of unsloth/Qwen2.5-1.5B-Instruct on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0335

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 7200

Training results

Training Loss Epoch Step Validation Loss
1.2132 0.0002 1 1.2143
0.1208 0.0340 150 0.1146
0.0996 0.0681 300 0.1296
0.0851 0.1021 450 0.1126
0.0921 0.1362 600 0.1001
0.0925 0.1702 750 0.0954
0.0789 0.2043 900 0.0919
0.1317 0.2383 1050 0.1077
0.1018 0.2724 1200 0.0936
0.0898 0.3064 1350 0.0863
0.0781 0.3405 1500 0.0785
0.0727 0.3745 1650 0.0763
0.0688 0.4086 1800 0.0736
0.1039 0.4426 1950 0.0808
0.0773 0.4766 2100 0.0675
0.0955 0.5107 2250 0.0773
0.0815 0.5447 2400 0.0620
0.0946 0.5788 2550 0.0672
0.0616 0.6128 2700 0.0616
0.0579 0.6469 2850 0.0568
0.0489 0.6809 3000 0.0561
0.0753 0.7150 3150 0.0568
0.0656 0.7490 3300 0.0520
0.0514 0.7831 3450 0.0592
0.0472 0.8171 3600 0.0507
0.046 0.8512 3750 0.0487
0.0742 0.8852 3900 0.0466
0.0426 0.9193 4050 0.0473
0.0707 0.9533 4200 0.0443
0.0726 0.9873 4350 0.0446
0.0427 1.0214 4500 0.0432
0.0649 1.0555 4650 0.0419
0.0727 1.0895 4800 0.0430
0.0696 1.1236 4950 0.0404
0.041 1.1576 5100 0.0403
0.0501 1.1917 5250 0.0393
0.0474 1.2257 5400 0.0377
0.0281 1.2598 5550 0.0380
0.0397 1.2938 5700 0.0366
0.0329 1.3279 5850 0.0373
0.0405 1.3619 6000 0.0352
0.0335 1.3960 6150 0.0346
0.0543 1.4300 6300 0.0345
0.0129 1.4641 6450 0.0340
0.0288 1.4981 6600 0.0338
0.0308 1.5321 6750 0.0337
0.022 1.5662 6900 0.0336
0.0284 1.6002 7050 0.0335
0.0338 1.6343 7200 0.0335

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
5
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Romain-XV/c9a25fed-0ee9-46e3-a648-22b9ee8890c4

Base model

Qwen/Qwen2.5-1.5B
Adapter
(288)
this model