See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: unsloth/Qwen2.5-1.5B-Instruct
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 87f3c9b2656146bb_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/87f3c9b2656146bb_train_data.json
type:
field_input: statements
field_instruction: quiz
field_output: solution_text
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 4
eval_max_new_tokens: 128
eval_steps: 150
eval_table_size: null
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: Romain-XV/c9a25fed-0ee9-46e3-a648-22b9ee8890c4
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.3
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 7200
micro_batch_size: 2
mlflow_experiment_name: /tmp/87f3c9b2656146bb_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 150
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.04
wandb_entity: null
wandb_mode: online
wandb_name: 146c3328-3a36-49c9-a68a-1b82be7dcc55
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 146c3328-3a36-49c9-a68a-1b82be7dcc55
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
c9a25fed-0ee9-46e3-a648-22b9ee8890c4
This model is a fine-tuned version of unsloth/Qwen2.5-1.5B-Instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0335
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 7200
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.2132 | 0.0002 | 1 | 1.2143 |
0.1208 | 0.0340 | 150 | 0.1146 |
0.0996 | 0.0681 | 300 | 0.1296 |
0.0851 | 0.1021 | 450 | 0.1126 |
0.0921 | 0.1362 | 600 | 0.1001 |
0.0925 | 0.1702 | 750 | 0.0954 |
0.0789 | 0.2043 | 900 | 0.0919 |
0.1317 | 0.2383 | 1050 | 0.1077 |
0.1018 | 0.2724 | 1200 | 0.0936 |
0.0898 | 0.3064 | 1350 | 0.0863 |
0.0781 | 0.3405 | 1500 | 0.0785 |
0.0727 | 0.3745 | 1650 | 0.0763 |
0.0688 | 0.4086 | 1800 | 0.0736 |
0.1039 | 0.4426 | 1950 | 0.0808 |
0.0773 | 0.4766 | 2100 | 0.0675 |
0.0955 | 0.5107 | 2250 | 0.0773 |
0.0815 | 0.5447 | 2400 | 0.0620 |
0.0946 | 0.5788 | 2550 | 0.0672 |
0.0616 | 0.6128 | 2700 | 0.0616 |
0.0579 | 0.6469 | 2850 | 0.0568 |
0.0489 | 0.6809 | 3000 | 0.0561 |
0.0753 | 0.7150 | 3150 | 0.0568 |
0.0656 | 0.7490 | 3300 | 0.0520 |
0.0514 | 0.7831 | 3450 | 0.0592 |
0.0472 | 0.8171 | 3600 | 0.0507 |
0.046 | 0.8512 | 3750 | 0.0487 |
0.0742 | 0.8852 | 3900 | 0.0466 |
0.0426 | 0.9193 | 4050 | 0.0473 |
0.0707 | 0.9533 | 4200 | 0.0443 |
0.0726 | 0.9873 | 4350 | 0.0446 |
0.0427 | 1.0214 | 4500 | 0.0432 |
0.0649 | 1.0555 | 4650 | 0.0419 |
0.0727 | 1.0895 | 4800 | 0.0430 |
0.0696 | 1.1236 | 4950 | 0.0404 |
0.041 | 1.1576 | 5100 | 0.0403 |
0.0501 | 1.1917 | 5250 | 0.0393 |
0.0474 | 1.2257 | 5400 | 0.0377 |
0.0281 | 1.2598 | 5550 | 0.0380 |
0.0397 | 1.2938 | 5700 | 0.0366 |
0.0329 | 1.3279 | 5850 | 0.0373 |
0.0405 | 1.3619 | 6000 | 0.0352 |
0.0335 | 1.3960 | 6150 | 0.0346 |
0.0543 | 1.4300 | 6300 | 0.0345 |
0.0129 | 1.4641 | 6450 | 0.0340 |
0.0288 | 1.4981 | 6600 | 0.0338 |
0.0308 | 1.5321 | 6750 | 0.0337 |
0.022 | 1.5662 | 6900 | 0.0336 |
0.0284 | 1.6002 | 7050 | 0.0335 |
0.0338 | 1.6343 | 7200 | 0.0335 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 5
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for Romain-XV/c9a25fed-0ee9-46e3-a648-22b9ee8890c4
Base model
Qwen/Qwen2.5-1.5B
Finetuned
Qwen/Qwen2.5-1.5B-Instruct
Finetuned
unsloth/Qwen2.5-1.5B-Instruct