See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: unsloth/mistral-7b-instruct-v0.2
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 251398662c103075_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/251398662c103075_train_data.json
type:
field_input: Company Name
field_instruction: Position
field_output: Long Description
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 100
eval_table_size: null
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: false
hub_model_id: Romain-XV/8aa54993-e0e8-449e-ab3b-34de6da402bc
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.3
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 840
micro_batch_size: 4
mlflow_experiment_name: /tmp/251398662c103075_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 2048
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
use_rslora: true
val_set_size: 0.03536142916752123
wandb_entity: null
wandb_mode: online
wandb_name: d3902dd9-ea96-4286-a166-f9b0d4a1cca4
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: d3902dd9-ea96-4286-a166-f9b0d4a1cca4
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
8aa54993-e0e8-449e-ab3b-34de6da402bc
This model is a fine-tuned version of unsloth/mistral-7b-instruct-v0.2 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.7108
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 840
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
17.5256 | 0.0002 | 1 | 2.2722 |
14.3098 | 0.0235 | 100 | 1.9101 |
14.5653 | 0.0469 | 200 | 1.8682 |
14.6911 | 0.0704 | 300 | 1.8234 |
14.2559 | 0.0938 | 400 | 1.7895 |
15.0114 | 0.1173 | 500 | 1.7570 |
13.5731 | 0.1408 | 600 | 1.7312 |
14.1723 | 0.1642 | 700 | 1.7160 |
14.1182 | 0.1877 | 800 | 1.7108 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 1
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
HF Inference deployability: The model has no pipeline_tag.
Model tree for Romain-XV/8aa54993-e0e8-449e-ab3b-34de6da402bc
Base model
unsloth/mistral-7b-instruct-v0.2