See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: NousResearch/Yarn-Mistral-7b-64k
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 37c8687d026e9fd5_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/37c8687d026e9fd5_train_data.json
type:
field_instruction: question
field_output: process
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 4
eval_max_new_tokens: 128
eval_steps: 150
eval_table_size: null
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: Romain-XV/440533d0-4ce2-46c1-8a0e-f65c18162efd
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: true
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.3
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 2639
micro_batch_size: 2
mlflow_experiment_name: /tmp/37c8687d026e9fd5_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 150
sequence_len: 2048
special_tokens:
pad_token: </s>
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.03300482530545966
wandb_entity: null
wandb_mode: online
wandb_name: a93fe1fb-147c-44b3-88ca-b0335c410502
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: a93fe1fb-147c-44b3-88ca-b0335c410502
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
440533d0-4ce2-46c1-8a0e-f65c18162efd
This model is a fine-tuned version of NousResearch/Yarn-Mistral-7b-64k on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0961
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 2639
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.6189 | 0.0001 | 1 | 0.7597 |
1.8377 | 0.0082 | 150 | 0.3992 |
1.1386 | 0.0164 | 300 | 0.3287 |
0.8881 | 0.0246 | 450 | 0.2975 |
1.0054 | 0.0328 | 600 | 0.2704 |
1.0347 | 0.0410 | 750 | 0.2467 |
0.7466 | 0.0491 | 900 | 0.2219 |
0.7175 | 0.0573 | 1050 | 0.1994 |
0.8256 | 0.0655 | 1200 | 0.1825 |
0.731 | 0.0737 | 1350 | 0.1682 |
0.5574 | 0.0819 | 1500 | 0.1521 |
0.4409 | 0.0901 | 1650 | 0.1386 |
0.4958 | 0.0983 | 1800 | 0.1268 |
0.4718 | 0.1065 | 1950 | 0.1164 |
0.3277 | 0.1147 | 2100 | 0.1075 |
0.4109 | 0.1229 | 2250 | 0.1008 |
0.3703 | 0.1311 | 2400 | 0.0974 |
0.4028 | 0.1393 | 2550 | 0.0961 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 1
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
HF Inference deployability: The model has no pipeline_tag.
Model tree for Romain-XV/440533d0-4ce2-46c1-8a0e-f65c18162efd
Base model
NousResearch/Yarn-Mistral-7b-64k