See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: Qwen/Qwen2.5-1.5B
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 5f268db15ffc7212_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/5f268db15ffc7212_train_data.json
type:
field_input: input
field_instruction: instruction
field_output: output
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 4
eval_max_new_tokens: 128
eval_steps: 150
eval_table_size: null
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: Romain-XV/12b3db6d-6d65-435d-8a25-2864637b169b
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.3
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 5040
micro_batch_size: 2
mlflow_experiment_name: /tmp/5f268db15ffc7212_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 150
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.04469673266884191
wandb_entity: null
wandb_mode: online
wandb_name: e613d36b-a8a6-4953-9f33-ddca7d87fc98
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: e613d36b-a8a6-4953-9f33-ddca7d87fc98
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
12b3db6d-6d65-435d-8a25-2864637b169b
This model is a fine-tuned version of Qwen/Qwen2.5-1.5B on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.9663
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 5040
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.526 | 0.0001 | 1 | 2.4610 |
2.0932 | 0.0112 | 150 | 2.3241 |
1.9923 | 0.0225 | 300 | 2.2711 |
2.5518 | 0.0337 | 450 | 2.2464 |
2.2405 | 0.0449 | 600 | 2.2287 |
2.7935 | 0.0561 | 750 | 2.1983 |
2.1035 | 0.0674 | 900 | 2.1862 |
2.3212 | 0.0786 | 1050 | 2.1668 |
1.9817 | 0.0898 | 1200 | 2.1552 |
2.1509 | 0.1011 | 1350 | 2.1452 |
2.0084 | 0.1123 | 1500 | 2.1316 |
1.9503 | 0.1235 | 1650 | 2.1120 |
1.9088 | 0.1347 | 1800 | 2.0998 |
2.4338 | 0.1460 | 1950 | 2.0879 |
1.5782 | 0.1572 | 2100 | 2.0774 |
2.451 | 0.1684 | 2250 | 2.0680 |
2.1608 | 0.1797 | 2400 | 2.0558 |
1.9455 | 0.1909 | 2550 | 2.0448 |
1.9849 | 0.2021 | 2700 | 2.0360 |
2.1229 | 0.2134 | 2850 | 2.0262 |
2.0596 | 0.2246 | 3000 | 2.0166 |
2.0005 | 0.2358 | 3150 | 2.0094 |
2.5008 | 0.2470 | 3300 | 2.0030 |
1.951 | 0.2583 | 3450 | 1.9947 |
2.2078 | 0.2695 | 3600 | 1.9886 |
2.0641 | 0.2807 | 3750 | 1.9838 |
2.1594 | 0.2920 | 3900 | 1.9794 |
2.405 | 0.3032 | 4050 | 1.9754 |
1.5995 | 0.3144 | 4200 | 1.9723 |
1.9719 | 0.3256 | 4350 | 1.9696 |
1.6564 | 0.3369 | 4500 | 1.9680 |
1.5252 | 0.3481 | 4650 | 1.9671 |
1.5916 | 0.3593 | 4800 | 1.9666 |
1.7533 | 0.3706 | 4950 | 1.9663 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 3
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for Romain-XV/12b3db6d-6d65-435d-8a25-2864637b169b
Base model
Qwen/Qwen2.5-1.5B