Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: Qwen/Qwen2.5-1.5B
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - 5f268db15ffc7212_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/5f268db15ffc7212_train_data.json
  type:
    field_input: input
    field_instruction: instruction
    field_output: output
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 4
eval_max_new_tokens: 128
eval_steps: 150
eval_table_size: null
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: Romain-XV/12b3db6d-6d65-435d-8a25-2864637b169b
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.3
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 5040
micro_batch_size: 2
mlflow_experiment_name: /tmp/5f268db15ffc7212_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 150
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.04469673266884191
wandb_entity: null
wandb_mode: online
wandb_name: e613d36b-a8a6-4953-9f33-ddca7d87fc98
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: e613d36b-a8a6-4953-9f33-ddca7d87fc98
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

12b3db6d-6d65-435d-8a25-2864637b169b

This model is a fine-tuned version of Qwen/Qwen2.5-1.5B on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.9663

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 5040

Training results

Training Loss Epoch Step Validation Loss
2.526 0.0001 1 2.4610
2.0932 0.0112 150 2.3241
1.9923 0.0225 300 2.2711
2.5518 0.0337 450 2.2464
2.2405 0.0449 600 2.2287
2.7935 0.0561 750 2.1983
2.1035 0.0674 900 2.1862
2.3212 0.0786 1050 2.1668
1.9817 0.0898 1200 2.1552
2.1509 0.1011 1350 2.1452
2.0084 0.1123 1500 2.1316
1.9503 0.1235 1650 2.1120
1.9088 0.1347 1800 2.0998
2.4338 0.1460 1950 2.0879
1.5782 0.1572 2100 2.0774
2.451 0.1684 2250 2.0680
2.1608 0.1797 2400 2.0558
1.9455 0.1909 2550 2.0448
1.9849 0.2021 2700 2.0360
2.1229 0.2134 2850 2.0262
2.0596 0.2246 3000 2.0166
2.0005 0.2358 3150 2.0094
2.5008 0.2470 3300 2.0030
1.951 0.2583 3450 1.9947
2.2078 0.2695 3600 1.9886
2.0641 0.2807 3750 1.9838
2.1594 0.2920 3900 1.9794
2.405 0.3032 4050 1.9754
1.5995 0.3144 4200 1.9723
1.9719 0.3256 4350 1.9696
1.6564 0.3369 4500 1.9680
1.5252 0.3481 4650 1.9671
1.5916 0.3593 4800 1.9666
1.7533 0.3706 4950 1.9663

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
3
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Romain-XV/12b3db6d-6d65-435d-8a25-2864637b169b

Base model

Qwen/Qwen2.5-1.5B
Adapter
(330)
this model