|
--- |
|
license: agpl-3.0 |
|
base_model: |
|
- Ultralytics/YOLO11 |
|
pipeline_tag: image-classification |
|
datasets: |
|
- Rokyuto/Banknotes |
|
tags: |
|
- yolov11 |
|
- banknotes |
|
- banknotes classification |
|
widget: |
|
- text: Banknotes Classification |
|
output: |
|
url: model_predictions/prediction_50 EUR_20240923_190943.jpg |
|
model-index: |
|
- name: banknotes-recognizer |
|
results: |
|
- task: |
|
type: object-classification |
|
metrics: |
|
- type: precision |
|
name: Precision |
|
value: 0.976 |
|
- type: recall |
|
name: Recall |
|
value: 0.974 |
|
- type: mAP50 |
|
name: mAP50 |
|
value: 0.991 |
|
- type: mAP50-95 |
|
name: mAP50-95 |
|
value: 0.789 |
|
--- |
|
|
|
<details><summary>Metrics</summary> |
|
|
|
YOLO11m summary (fused): 303 layers, 20,037,742 parameters, 0 gradients, 67.7 GFLOPs |
|
|
|
| Class | Images | Instances | Box(P) | R | mAP50 | mAP50-95 | |
|
|--------|--------|-----------|---------|-------|-------|----------| |
|
| all | 110 | 256 | 0.969 | 0.977 | 0.989 | 0.801 | |
|
| 5 BGN | 10 | 35 | 0.969 | 0.9 | 0.975 | 0.712 | |
|
| 10 BGN | 9 | 29 | 0.96 | 1 | 0.976 | 0.773 | |
|
| 20 BGN | 7 | 25 | 0.996 | 0.96 | 0.993 | 0.795 | |
|
| 50 BGN | 7 | 24 | 0.996 | 0.966 | 0.989 | 0.801 | |
|
| 100 BGN| 13 | 41 | 0.975 | 0.955 | 0.982 | 0.823 | |
|
| 5 EUR | 18 | 19 | 0.863 | 0.991 | 0.986 | 0.837 | |
|
| 10 EUR | 14 | 38 | 0.998 | 1 | 0.995 | 0.787 | |
|
| 20 EUR | 15 | 15 | 0.986 | 1 | 0.995 | 0.861 | |
|
| 50 EUR | 7 | 7 | 0.97 | 1 | 0.995 | 0.920 | |
|
| 100 EUR| 10 | 23 | 0.97 | 1 | 0.995 | 0.675 | |
|
|
|
</details> |