wav2vec2-urdufinetuned

This model is a fine-tuned version of facebook/wav2vec2-base-960h on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 3.6089
  • Wer: 1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 10
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 4
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
10.903 0.06 100 3.7302 1.0
3.6693 0.11 200 3.6193 1.0
3.6908 0.17 300 3.6678 1.0
3.6565 0.22 400 3.6365 1.0
3.6348 0.28 500 3.6443 1.0
3.6878 0.33 600 3.6583 1.0
3.572 0.39 700 3.6304 1.0
3.6749 0.44 800 3.6420 1.0
3.6872 0.5 900 3.6469 1.0
3.6594 0.56 1000 3.6278 1.0
3.6131 0.61 1100 3.6169 1.0
3.5748 0.67 1200 3.6234 1.0
3.6181 0.72 1300 3.6494 1.0
3.6164 0.78 1400 3.6248 1.0
3.6688 0.83 1500 3.6610 1.0
4.1978 0.89 1600 3.6903 1.0
3.7485 0.94 1700 3.6275 1.0
3.649 1.0 1800 3.6139 1.0
3.5834 1.06 1900 3.6161 1.0
3.6338 1.11 2000 3.6647 1.0
3.5427 1.17 2100 3.6129 1.0
3.6117 1.22 2200 3.6084 1.0
3.6726 1.28 2300 3.6149 1.0
3.6278 1.33 2400 3.6342 1.0
3.6746 1.39 2500 3.6102 1.0
3.574 1.44 2600 3.7048 1.0
3.5892 1.5 2700 3.6126 1.0
3.6575 1.56 2800 3.6163 1.0
3.592 1.61 2900 3.6610 1.0
3.6506 1.67 3000 3.6127 1.0
3.5823 1.72 3100 3.6071 1.0
3.6674 1.78 3200 3.6032 1.0
3.6017 1.83 3300 3.6236 1.0
3.5865 1.89 3400 3.6208 1.0
3.646 1.94 3500 3.6074 1.0
3.6042 2.0 3600 3.6442 1.0
3.56 2.06 3700 3.6076 1.0
3.6241 2.11 3800 3.6051 1.0
3.6245 2.17 3900 3.6074 1.0
3.5764 2.22 4000 3.6238 1.0
3.6168 2.28 4100 3.6192 1.0
3.6143 2.33 4200 3.6093 1.0
3.613 2.39 4300 3.6123 1.0
3.6178 2.44 4400 3.6135 1.0
3.6234 2.5 4500 3.6161 1.0
3.5833 2.56 4600 3.6064 1.0
3.5759 2.61 4700 3.6077 1.0
3.6747 2.67 4800 3.6123 1.0
3.5914 2.72 4900 3.6041 1.0
3.6342 2.78 5000 3.6208 1.0
3.5883 2.83 5100 3.6056 1.0
3.5563 2.89 5200 3.6159 1.0
3.6213 2.94 5300 3.6173 1.0
3.6507 3.0 5400 3.6031 1.0
3.549 3.06 5500 3.6371 1.0
3.5712 3.11 5600 3.6049 1.0
3.5731 3.17 5700 3.6273 1.0
3.6232 3.22 5800 3.6012 1.0
3.6406 3.28 5900 3.6020 1.0
3.6456 3.33 6000 3.6015 1.0
3.6268 3.39 6100 3.6047 1.0
3.6286 3.44 6200 3.6023 1.0
3.609 3.5 6300 3.6053 1.0
3.6256 3.56 6400 3.6040 1.0
3.5537 3.61 6500 3.6075 1.0
3.5214 3.67 6600 3.6055 1.0
3.6031 3.72 6700 3.6156 1.0
3.6624 3.78 6800 3.6037 1.0
3.5813 3.83 6900 3.6030 1.0
3.6514 3.89 7000 3.6043 1.0
3.5535 3.94 7100 3.6091 1.0
3.5954 4.0 7200 3.6089 1.0

Framework versions

  • Transformers 4.36.0.dev0
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1
Downloads last month
32
Safetensors
Model size
965M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Revolt47/wav2vec2-urdufinetuned

Finetuned
(122)
this model