Granite-3.1-8b-instruct-FP8-dynamic

Model Overview
- Model Architecture: granite-3.1-8b-instruct
- Input: Text
- Output: Text
- Model Optimizations:
- Weight quantization: FP8
- Activation quantization: FP8
- Release Date: 1/8/2025
- Version: 1.0
- Model Developers: Neural Magic
Quantized version of ibm-granite/granite-3.1-8b-instruct. It achieves an average score of 70.57 on the OpenLLM benchmark (version 1), whereas the unquantized model achieves 70.30.
Model Optimizations
This model was obtained by quantizing the weights and activations of ibm-granite/granite-3.1-8b-instruct to FP8 data type, ready for inference with vLLM >= 0.5.2. This optimization reduces the number of bits per parameter from 16 to 8, reducing the disk size and GPU memory requirements by approximately 50%. Only the weights and activations of the linear operators within transformers blocks are quantized.
Deployment
Use with vLLM
This model can be deployed efficiently using the vLLM backend, as shown in the example below.
from transformers import AutoTokenizer
from vllm import LLM, SamplingParams
max_model_len, tp_size = 4096, 1
model_name = "neuralmagic/granite-3.1-8b-instruct-FP8-dynamic"
tokenizer = AutoTokenizer.from_pretrained(model_name)
llm = LLM(model=model_name, tensor_parallel_size=tp_size, max_model_len=max_model_len, trust_remote_code=True)
sampling_params = SamplingParams(temperature=0.3, max_tokens=256, stop_token_ids=[tokenizer.eos_token_id])
messages_list = [
[{"role": "user", "content": "Who are you? Please respond in pirate speak!"}],
]
prompt_token_ids = [tokenizer.apply_chat_template(messages, add_generation_prompt=True) for messages in messages_list]
outputs = llm.generate(prompt_token_ids=prompt_token_ids, sampling_params=sampling_params)
generated_text = [output.outputs[0].text for output in outputs]
print(generated_text)
vLLM also supports OpenAI-compatible serving. See the documentation for more details.
Deploy on Red Hat AI Inference Server
$ podman run --rm -it --device nvidia.com/gpu=all -p 8000:8000 \
--ipc=host \
--env "HUGGING_FACE_HUB_TOKEN=$HF_TOKEN" \
--env "HF_HUB_OFFLINE=0" -v ~/.cache/vllm:/home/vllm/.cache \
--name=vllm \
registry.access.redhat.com/rhaiis/rh-vllm-cuda \
vllm serve \
--tensor-parallel-size 1 \
--max-model-len 32768 \
--enforce-eager --model RedHatAI/granite-3.1-8b-instruct-FP8-dynamic
​​See Red Hat AI Inference Server documentation for more details.
Deploy on Red Hat Enterprise Linux AI
# Download model from Red Hat Registry via docker
# Note: This downloads the model to ~/.cache/instructlab/models unless --model-dir is specified.
ilab model download --repository docker://registry.redhat.io/rhelai1/granite-3-1-8b-instruct-fp8-dynamic:1.5
# Serve model via ilab
ilab model serve --model-path ~/.cache/instructlab/models/granite-3-1-8b-instruct-fp8-dynamic -- --trust-remote-code
# Chat with model
ilab model chat --model ~/.cache/instructlab/models/granite-3-1-8b-instruct-fp8-dynamic
See Red Hat Enterprise Linux AI documentation for more details.
Deploy on Red Hat Openshift AI
# Setting up vllm server with ServingRuntime
# Save as: vllm-servingruntime.yaml
apiVersion: serving.kserve.io/v1alpha1
kind: ServingRuntime
metadata:
name: vllm-cuda-runtime # OPTIONAL CHANGE: set a unique name
annotations:
openshift.io/display-name: vLLM NVIDIA GPU ServingRuntime for KServe
opendatahub.io/recommended-accelerators: '["nvidia.com/gpu"]'
labels:
opendatahub.io/dashboard: 'true'
spec:
annotations:
prometheus.io/port: '8080'
prometheus.io/path: '/metrics'
multiModel: false
supportedModelFormats:
- autoSelect: true
name: vLLM
containers:
- name: kserve-container
image: quay.io/modh/vllm:rhoai-2.20-cuda # CHANGE if needed. If AMD: quay.io/modh/vllm:rhoai-2.20-rocm
command:
- python
- -m
- vllm.entrypoints.openai.api_server
args:
- "--port=8080"
- "--model=/mnt/models"
- "--served-model-name={{.Name}}"
env:
- name: HF_HOME
value: /tmp/hf_home
ports:
- containerPort: 8080
protocol: TCP
# Attach model to vllm server. This is an NVIDIA template
# Save as: inferenceservice.yaml
apiVersion: serving.kserve.io/v1beta1
kind: InferenceService
metadata:
annotations:
openshift.io/display-name: granite-3-1-8b-instruct-fp8-dynamic # OPTIONAL CHANGE
serving.kserve.io/deploymentMode: RawDeployment
name: granite-3-1-8b-instruct-fp8-dynamic # specify model name. This value will be used to invoke the model in the payload
labels:
opendatahub.io/dashboard: 'true'
spec:
predictor:
maxReplicas: 1
minReplicas: 1
model:
args:
- '--trust-remote-code'
modelFormat:
name: vLLM
name: ''
resources:
limits:
cpu: '2' # this is model specific
memory: 8Gi # this is model specific
nvidia.com/gpu: '1' # this is accelerator specific
requests: # same comment for this block
cpu: '1'
memory: 4Gi
nvidia.com/gpu: '1'
runtime: vllm-cuda-runtime # must match the ServingRuntime name above
storageUri: registry.redhat.io/rhelai1/modelcar-granite-3-1-8b-instruct-fp8-dynamic:1.5
tolerations:
- effect: NoSchedule
key: nvidia.com/gpu
operator: Exists
# make sure first to be in the project where you want to deploy the model
# oc project <project-name>
# apply both resources to run model
# Apply the ServingRuntime
oc apply -f vllm-servingruntime.yaml
# Apply the InferenceService
oc apply -f qwen-inferenceservice.yaml
# Replace <inference-service-name> and <cluster-ingress-domain> below:
# - Run `oc get inferenceservice` to find your URL if unsure.
# Call the server using curl:
curl https://<inference-service-name>-predictor-default.<domain>/v1/chat/completions
-H "Content-Type: application/json" \
-d '{
"model": "Llama-4-Maverick-17B-128E-Instruct-FP8",
"stream": true,
"stream_options": {
"include_usage": true
},
"max_tokens": 1,
"messages": [
{
"role": "user",
"content": "How can a bee fly when its wings are so small?"
}
]
}'
See Red Hat Openshift AI documentation for more details.
Creation
This model was created with llm-compressor by running the code snippet below.
Model Creation Code
python quantize.py --model_id ibm-granite/granite-3.1-8b-instruct --save_path "output_dir/"
import argparse
from transformers import AutoModelForCausalLM, AutoTokenizer
from llmcompressor.modifiers.quantization import QuantizationModifier
from llmcompressor.transformers import oneshot
import os
def main():
parser = argparse.ArgumentParser(description='Quantize a transformer model to FP8')
parser.add_argument('--model_id', type=str, required=True,
help='The model ID from HuggingFace (e.g., "meta-llama/Meta-Llama-3-8B-Instruct")')
parser.add_argument('--save_path', type=str, default='.',
help='Custom path to save the quantized model. If not provided, will use model_name-FP8-dynamic')
args = parser.parse_args()
# Load model
model = AutoModelForCausalLM.from_pretrained(
args.model_id, device_map="auto", torch_dtype="auto", trust_remote_code=True,
)
tokenizer = AutoTokenizer.from_pretrained(args.model_id)
# Configure the quantization algorithm and scheme
recipe = QuantizationModifier(
targets="Linear", scheme="FP8_DYNAMIC", ignore=["lm_head"]
)
# Apply quantization
oneshot(model=model, recipe=recipe)
save_path = os.path.join(args.save_path, args.model_id.split("/")[1] + "-FP8-dynamic")
os.makedirs(save_path, exist_ok=True)
# Save to disk in compressed-tensors format
model.save_pretrained(save_path)
tokenizer.save_pretrained(save_path)
print(f"Model and tokenizer saved to: {save_path}")
if __name__ == "__main__":
main()
Evaluation
The model was evaluated on OpenLLM Leaderboard V1, OpenLLM Leaderboard V2 and on HumanEval, using the following commands:
Evaluation Commands
OpenLLM Leaderboard V1:
lm_eval \
--model vllm \
--model_args pretrained="neuralmagic/granite-3.1-8b-instruct-FP8-dynamic",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=1,gpu_memory_utilization=0.8,enable_chunked_prefill=True,trust_remote_code=True \
--tasks openllm \
--write_out \
--batch_size auto \
--output_path output_dir \
--show_config
OpenLLM Leaderboard V2:
lm_eval \
--model vllm \
--model_args pretrained="neuralmagic/granite-3.1-8b-instruct-FP8-dynamic",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=1,gpu_memory_utilization=0.8,enable_chunked_prefill=True,trust_remote_code=True \
--tasks leaderboard \
--write_out \
--batch_size auto \
--output_path output_dir \
--show_config
HumanEval
Generation
python3 codegen/generate.py \
--model neuralmagic/granite-3.1-8b-instruct-FP8-dynamic \
--bs 16 \
--temperature 0.2 \
--n_samples 50 \
--root "." \
--dataset humaneval
Sanitization
python3 evalplus/sanitize.py \
humaneval/neuralmagic--granite-3.1-8b-instruct-FP8-dynamic_vllm_temp_0.2
Evaluation
evalplus.evaluate \
--dataset humaneval \
--samples humaneval/neuralmagic--granite-3.1-8b-instruct-FP8-dynamic_vllm_temp_0.2-sanitized
Accuracy
Category | Metric | ibm-granite/granite-3.1-8b-instruct | neuralmagic/granite-3.1-8b-instruct-FP8-dynamic | Recovery (%) |
---|---|---|---|---|
OpenLLM V1 | ARC-Challenge (Acc-Norm, 25-shot) | 66.81 | 66.81 | 100.00 |
GSM8K (Strict-Match, 5-shot) | 64.52 | 66.64 | 103.29 | |
HellaSwag (Acc-Norm, 10-shot) | 84.18 | 84.16 | 99.98 | |
MMLU (Acc, 5-shot) | 65.52 | 65.36 | 99.76 | |
TruthfulQA (MC2, 0-shot) | 60.57 | 60.52 | 99.92 | |
Winogrande (Acc, 5-shot) | 80.19 | 79.95 | 99.70 | |
Average Score | 70.30 | 70.57 | 100.39 | |
OpenLLM V2 | IFEval (Inst Level Strict Acc, 0-shot) | 74.10 | 73.62 | 99.35 |
BBH (Acc-Norm, 3-shot) | 53.19 | 53.26 | 100.13 | |
Math-Hard (Exact-Match, 4-shot) | 14.77 | 16.79 | 113.66 | |
GPQA (Acc-Norm, 0-shot) | 31.76 | 32.58 | 102.58 | |
MUSR (Acc-Norm, 0-shot) | 46.01 | 47.34 | 102.89 | |
MMLU-Pro (Acc, 5-shot) | 35.81 | 35.72 | 99.75 | |
Average Score | 42.61 | 43.22 | 101.43 | |
Coding | HumanEval Pass@1 | 71.00 | 69.90 | 98.45 |
Inference Performance
This model achieves up to 1.5x speedup in single-stream deployment and up to 1.1x speedup in multi-stream asynchronous deployment on L40 GPUs. The following performance benchmarks were conducted with vLLM version 0.6.6.post1, and GuideLLM.
Benchmarking Command
guidellm --model neuralmagic/granite-3.1-8b-instruct-FP8-dynamic --target "http://localhost:8000/v1" --data-type emulated --data "prompt_tokens=<prompt_tokens>,generated_tokens=<generated_tokens>" --max seconds 360 --backend aiohttp_server
Single-stream performance (measured with vLLM version 0.6.6.post1)
Latency (s) | |||||||||
---|---|---|---|---|---|---|---|---|---|
GPU class | Model | Speedup | Code Completion prefill: 256 tokens decode: 1024 tokens |
Docstring Generation prefill: 768 tokens decode: 128 tokens |
Code Fixing prefill: 1024 tokens decode: 1024 tokens |
RAG prefill: 1024 tokens decode: 128 tokens |
Instruction Following prefill: 256 tokens decode: 128 tokens |
Multi-turn Chat prefill: 512 tokens decode: 256 tokens |
Large Summarization prefill: 4096 tokens decode: 512 tokens |
L40 | granite-3.1-8b-instruct | 25.1 | 3.2 | 25.3 | 3.2 | 3.2 | 6.3 | 13.4 | |
granite-3.1-8b-instruct-FP8-dynamic (this model) |
1.47 | 16.8 | 2.2 | 17.1 | 2.2 | 2.1 | 4.2 | 9.3 | |
granite-3.1-8b-instruct-quantized.w4a16 | 2.72 | 8.9 | 1.2 | 9.2 | 1.2 | 1.1 | 2.3 | 5.3 |
Multi-stream asynchronous performance (measured with vLLM version 0.6.6.post1)
Maximum Throughput (Queries per Second) | |||||||||
---|---|---|---|---|---|---|---|---|---|
GPU class | Model | Speedup | Code Completion prefill: 256 tokens decode: 1024 tokens |
Docstring Generation prefill: 768 tokens decode: 128 tokens |
Code Fixing prefill: 1024 tokens decode: 1024 tokens |
RAG prefill: 1024 tokens decode: 128 tokens |
Instruction Following prefill: 256 tokens decode: 128 tokens |
Multi-turn Chat prefill: 512 tokens decode: 256 tokens |
Large Summarization prefill: 4096 tokens decode: 512 tokens |
L40 | granite-3.1-8b-instruct | 1.4 | 7.8 | 1.1 | 6.2 | 15.5 | 6.0 | 0.7 | |
granite-3.1-8b-instruct-FP8-dynamic (this model) |
1.12 | 2.1 | 7.4 | 1.3 | 5.9 | 15.3 | 6.9 | 0.8 | |
granite-3.1-2b-instruct-quantized.w4a16 | 1.29 | 2.4 | 8.9 | 1.4 | 7.1 | 17.8 | 7.8 | 1.0 |
- Downloads last month
- 84
Model tree for RedHatAI/granite-3.1-8b-instruct-FP8-dynamic
Base model
ibm-granite/granite-3.1-8b-base