Granite-3.1-8b-instruct-FP8-dynamic Model Icon

Validated Badge

Model Overview

  • Model Architecture: granite-3.1-8b-instruct
    • Input: Text
    • Output: Text
  • Model Optimizations:
    • Weight quantization: FP8
    • Activation quantization: FP8
  • Release Date: 1/8/2025
  • Version: 1.0
  • Model Developers: Neural Magic

Quantized version of ibm-granite/granite-3.1-8b-instruct. It achieves an average score of 70.57 on the OpenLLM benchmark (version 1), whereas the unquantized model achieves 70.30.

Model Optimizations

This model was obtained by quantizing the weights and activations of ibm-granite/granite-3.1-8b-instruct to FP8 data type, ready for inference with vLLM >= 0.5.2. This optimization reduces the number of bits per parameter from 16 to 8, reducing the disk size and GPU memory requirements by approximately 50%. Only the weights and activations of the linear operators within transformers blocks are quantized.

Deployment

Use with vLLM

This model can be deployed efficiently using the vLLM backend, as shown in the example below.

from transformers import AutoTokenizer
from vllm import LLM, SamplingParams

max_model_len, tp_size = 4096, 1
model_name = "neuralmagic/granite-3.1-8b-instruct-FP8-dynamic"
tokenizer = AutoTokenizer.from_pretrained(model_name)
llm = LLM(model=model_name, tensor_parallel_size=tp_size, max_model_len=max_model_len, trust_remote_code=True)
sampling_params = SamplingParams(temperature=0.3, max_tokens=256, stop_token_ids=[tokenizer.eos_token_id])

messages_list = [
    [{"role": "user", "content": "Who are you? Please respond in pirate speak!"}],
]

prompt_token_ids = [tokenizer.apply_chat_template(messages, add_generation_prompt=True) for messages in messages_list]

outputs = llm.generate(prompt_token_ids=prompt_token_ids, sampling_params=sampling_params)

generated_text = [output.outputs[0].text for output in outputs]
print(generated_text)

vLLM also supports OpenAI-compatible serving. See the documentation for more details.

Deploy on Red Hat AI Inference Server
$ podman run --rm -it --device nvidia.com/gpu=all -p 8000:8000 \
 --ipc=host \
--env "HUGGING_FACE_HUB_TOKEN=$HF_TOKEN" \
--env "HF_HUB_OFFLINE=0" -v ~/.cache/vllm:/home/vllm/.cache \
--name=vllm \
registry.access.redhat.com/rhaiis/rh-vllm-cuda \
vllm serve \
--tensor-parallel-size 1 \
--max-model-len 32768  \
--enforce-eager --model RedHatAI/granite-3.1-8b-instruct-FP8-dynamic

​​See Red Hat AI Inference Server documentation for more details.

Deploy on Red Hat Enterprise Linux AI
# Download model from Red Hat Registry via docker
# Note: This downloads the model to ~/.cache/instructlab/models unless --model-dir is specified.
ilab model download --repository docker://registry.redhat.io/rhelai1/granite-3-1-8b-instruct-fp8-dynamic:1.5
# Serve model via ilab
ilab model serve --model-path ~/.cache/instructlab/models/granite-3-1-8b-instruct-fp8-dynamic -- --trust-remote-code
  
# Chat with model
ilab model chat --model ~/.cache/instructlab/models/granite-3-1-8b-instruct-fp8-dynamic

See Red Hat Enterprise Linux AI documentation for more details.

Deploy on Red Hat Openshift AI
# Setting up vllm server with ServingRuntime
# Save as: vllm-servingruntime.yaml
apiVersion: serving.kserve.io/v1alpha1
kind: ServingRuntime
metadata:
 name: vllm-cuda-runtime # OPTIONAL CHANGE: set a unique name
 annotations:
   openshift.io/display-name: vLLM NVIDIA GPU ServingRuntime for KServe
   opendatahub.io/recommended-accelerators: '["nvidia.com/gpu"]'
 labels:
   opendatahub.io/dashboard: 'true'
spec:
 annotations:
   prometheus.io/port: '8080'
   prometheus.io/path: '/metrics'
 multiModel: false
 supportedModelFormats:
   - autoSelect: true
     name: vLLM
 containers:
   - name: kserve-container
     image: quay.io/modh/vllm:rhoai-2.20-cuda # CHANGE if needed. If AMD: quay.io/modh/vllm:rhoai-2.20-rocm
     command:
       - python
       - -m
       - vllm.entrypoints.openai.api_server
     args:
       - "--port=8080"
       - "--model=/mnt/models"
       - "--served-model-name={{.Name}}"
     env:
       - name: HF_HOME
         value: /tmp/hf_home
     ports:
       - containerPort: 8080
         protocol: TCP
# Attach model to vllm server. This is an NVIDIA template
# Save as: inferenceservice.yaml
apiVersion: serving.kserve.io/v1beta1
kind: InferenceService
metadata:
  annotations:
    openshift.io/display-name: granite-3-1-8b-instruct-fp8-dynamic # OPTIONAL CHANGE
    serving.kserve.io/deploymentMode: RawDeployment
  name: granite-3-1-8b-instruct-fp8-dynamic          # specify model name. This value will be used to invoke the model in the payload
  labels:
    opendatahub.io/dashboard: 'true'
spec:
  predictor:
    maxReplicas: 1
    minReplicas: 1
    model:
      args:
        - '--trust-remote-code'
      modelFormat:
        name: vLLM
      name: ''
      resources:
        limits:
          cpu: '2'			# this is model specific
          memory: 8Gi		# this is model specific
          nvidia.com/gpu: '1'	# this is accelerator specific
        requests:			# same comment for this block
          cpu: '1'
          memory: 4Gi
          nvidia.com/gpu: '1'
      runtime: vllm-cuda-runtime	# must match the ServingRuntime name above
      storageUri: registry.redhat.io/rhelai1/modelcar-granite-3-1-8b-instruct-fp8-dynamic:1.5
    tolerations:
    - effect: NoSchedule
      key: nvidia.com/gpu
      operator: Exists
# make sure first to be in the project where you want to deploy the model
# oc project <project-name>

# apply both resources to run model

# Apply the ServingRuntime
oc apply -f vllm-servingruntime.yaml

# Apply the InferenceService
oc apply -f qwen-inferenceservice.yaml
# Replace <inference-service-name> and <cluster-ingress-domain> below:
# - Run `oc get inferenceservice` to find your URL if unsure.

# Call the server using curl:
curl https://<inference-service-name>-predictor-default.<domain>/v1/chat/completions
        -H "Content-Type: application/json" \
        -d '{
    "model": "Llama-4-Maverick-17B-128E-Instruct-FP8",
    "stream": true,
    "stream_options": {
        "include_usage": true
    },
    "max_tokens": 1,
    "messages": [
        {
            "role": "user",
            "content": "How can a bee fly when its wings are so small?"
        }
    ]
}'

See Red Hat Openshift AI documentation for more details.

Creation

This model was created with llm-compressor by running the code snippet below.

Model Creation Code
python quantize.py --model_id ibm-granite/granite-3.1-8b-instruct --save_path "output_dir/"
import argparse
from transformers import AutoModelForCausalLM, AutoTokenizer
from llmcompressor.modifiers.quantization import QuantizationModifier
from llmcompressor.transformers import oneshot
import os

def main():
    parser = argparse.ArgumentParser(description='Quantize a transformer model to FP8')
    parser.add_argument('--model_id', type=str, required=True,
                        help='The model ID from HuggingFace (e.g., "meta-llama/Meta-Llama-3-8B-Instruct")')
    parser.add_argument('--save_path', type=str, default='.',
                        help='Custom path to save the quantized model. If not provided, will use model_name-FP8-dynamic')
    args = parser.parse_args()

    # Load model
    model = AutoModelForCausalLM.from_pretrained(
        args.model_id, device_map="auto", torch_dtype="auto", trust_remote_code=True,
    )
    tokenizer = AutoTokenizer.from_pretrained(args.model_id)

    # Configure the quantization algorithm and scheme
    recipe = QuantizationModifier(
        targets="Linear", scheme="FP8_DYNAMIC", ignore=["lm_head"]
    )

    # Apply quantization
    oneshot(model=model, recipe=recipe)

    save_path = os.path.join(args.save_path, args.model_id.split("/")[1] + "-FP8-dynamic")
    os.makedirs(save_path, exist_ok=True)

    # Save to disk in compressed-tensors format
    model.save_pretrained(save_path)
    tokenizer.save_pretrained(save_path)
    print(f"Model and tokenizer saved to: {save_path}")

if __name__ == "__main__":
    main()

Evaluation

The model was evaluated on OpenLLM Leaderboard V1, OpenLLM Leaderboard V2 and on HumanEval, using the following commands:

Evaluation Commands

OpenLLM Leaderboard V1:

lm_eval \
  --model vllm \
  --model_args pretrained="neuralmagic/granite-3.1-8b-instruct-FP8-dynamic",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=1,gpu_memory_utilization=0.8,enable_chunked_prefill=True,trust_remote_code=True \
  --tasks openllm \
  --write_out \
  --batch_size auto \
  --output_path output_dir \
  --show_config

OpenLLM Leaderboard V2:

lm_eval \
  --model vllm \
  --model_args pretrained="neuralmagic/granite-3.1-8b-instruct-FP8-dynamic",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=1,gpu_memory_utilization=0.8,enable_chunked_prefill=True,trust_remote_code=True \
  --tasks leaderboard \
  --write_out \
  --batch_size auto \
  --output_path output_dir \
  --show_config

HumanEval

Generation
python3 codegen/generate.py \
  --model neuralmagic/granite-3.1-8b-instruct-FP8-dynamic \
  --bs 16 \
  --temperature 0.2 \
  --n_samples 50 \
  --root "." \
  --dataset humaneval
Sanitization
python3 evalplus/sanitize.py \
  humaneval/neuralmagic--granite-3.1-8b-instruct-FP8-dynamic_vllm_temp_0.2
Evaluation
evalplus.evaluate \
  --dataset humaneval \
  --samples humaneval/neuralmagic--granite-3.1-8b-instruct-FP8-dynamic_vllm_temp_0.2-sanitized

Accuracy

Category Metric ibm-granite/granite-3.1-8b-instruct neuralmagic/granite-3.1-8b-instruct-FP8-dynamic Recovery (%)
OpenLLM V1 ARC-Challenge (Acc-Norm, 25-shot) 66.81 66.81 100.00
GSM8K (Strict-Match, 5-shot) 64.52 66.64 103.29
HellaSwag (Acc-Norm, 10-shot) 84.18 84.16 99.98
MMLU (Acc, 5-shot) 65.52 65.36 99.76
TruthfulQA (MC2, 0-shot) 60.57 60.52 99.92
Winogrande (Acc, 5-shot) 80.19 79.95 99.70
Average Score 70.30 70.57 100.39
OpenLLM V2 IFEval (Inst Level Strict Acc, 0-shot) 74.10 73.62 99.35
BBH (Acc-Norm, 3-shot) 53.19 53.26 100.13
Math-Hard (Exact-Match, 4-shot) 14.77 16.79 113.66
GPQA (Acc-Norm, 0-shot) 31.76 32.58 102.58
MUSR (Acc-Norm, 0-shot) 46.01 47.34 102.89
MMLU-Pro (Acc, 5-shot) 35.81 35.72 99.75
Average Score 42.61 43.22 101.43
Coding HumanEval Pass@1 71.00 69.90 98.45

Inference Performance

This model achieves up to 1.5x speedup in single-stream deployment and up to 1.1x speedup in multi-stream asynchronous deployment on L40 GPUs. The following performance benchmarks were conducted with vLLM version 0.6.6.post1, and GuideLLM.

Benchmarking Command
guidellm --model neuralmagic/granite-3.1-8b-instruct-FP8-dynamic --target "http://localhost:8000/v1" --data-type emulated --data "prompt_tokens=<prompt_tokens>,generated_tokens=<generated_tokens>" --max seconds 360 --backend aiohttp_server

Single-stream performance (measured with vLLM version 0.6.6.post1)

Latency (s)
GPU class Model Speedup Code Completion
prefill: 256 tokens
decode: 1024 tokens
Docstring Generation
prefill: 768 tokens
decode: 128 tokens
Code Fixing
prefill: 1024 tokens
decode: 1024 tokens
RAG
prefill: 1024 tokens
decode: 128 tokens
Instruction Following
prefill: 256 tokens
decode: 128 tokens
Multi-turn Chat
prefill: 512 tokens
decode: 256 tokens
Large Summarization
prefill: 4096 tokens
decode: 512 tokens
L40 granite-3.1-8b-instruct 25.1 3.2 25.3 3.2 3.2 6.3 13.4
granite-3.1-8b-instruct-FP8-dynamic
(this model)
1.47 16.8 2.2 17.1 2.2 2.1 4.2 9.3
granite-3.1-8b-instruct-quantized.w4a16 2.72 8.9 1.2 9.2 1.2 1.1 2.3 5.3

Multi-stream asynchronous performance (measured with vLLM version 0.6.6.post1)

Maximum Throughput (Queries per Second)
GPU class Model Speedup Code Completion
prefill: 256 tokens
decode: 1024 tokens
Docstring Generation
prefill: 768 tokens
decode: 128 tokens
Code Fixing
prefill: 1024 tokens
decode: 1024 tokens
RAG
prefill: 1024 tokens
decode: 128 tokens
Instruction Following
prefill: 256 tokens
decode: 128 tokens
Multi-turn Chat
prefill: 512 tokens
decode: 256 tokens
Large Summarization
prefill: 4096 tokens
decode: 512 tokens
L40 granite-3.1-8b-instruct 1.4 7.8 1.1 6.2 15.5 6.0 0.7
granite-3.1-8b-instruct-FP8-dynamic
(this model)
1.12 2.1 7.4 1.3 5.9 15.3 6.9 0.8
granite-3.1-2b-instruct-quantized.w4a16 1.29 2.4 8.9 1.4 7.1 17.8 7.8 1.0
Downloads last month
84
Safetensors
Model size
8.37B params
Tensor type
BF16
·
F8_E4M3
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for RedHatAI/granite-3.1-8b-instruct-FP8-dynamic

Quantized
(33)
this model

Collections including RedHatAI/granite-3.1-8b-instruct-FP8-dynamic