Qwen2.5-7B-Instruct-quantized.w4a16

Model Overview
- Model Architecture: Qwen2
- Input: Text
- Output: Text
- Model Optimizations:
- Weight quantization: INT4
- Intended Use Cases: Intended for commercial and research use multiple languages. Similarly to Qwen2.5-7B, this models is intended for assistant-like chat.
- Out-of-scope: Use in any manner that violates applicable laws or regulations (including trade compliance laws).
- Release Date: 04/16/2025
- Version: 1.0
- License(s): apache-2.0
- Model Developers: Neural Magic
Model Optimizations
This model was obtained by quantizing the weights of Qwen2.5-7B-Instruct to INT4 data type. This optimization reduces the number of bits per parameter from 16 to 4, reducing the disk size and GPU memory requirements by approximately 75%.
Only the weights of the linear operators within transformers blocks are quantized. Weights are quantized using a symmetric per-group scheme, with group size 128. The GPTQ algorithm is applied for quantization, as implemented in the llm-compressor library.
Deployment
This model can be deployed efficiently using the vLLM backend, as shown in the example below.
from vllm import LLM, SamplingParams
from transformers import AutoTokenizer
model_id = "RedHatAI/Qwen2.5-7B-Instruct-quantized.w4a16"
number_gpus = 1
max_model_len = 8192
sampling_params = SamplingParams(temperature=0.7, top_p=0.8, max_tokens=256)
tokenizer = AutoTokenizer.from_pretrained(model_id)
messages = [
{"role": "user", "content": "Give me a short introduction to large language model."},
]
prompts = tokenizer.apply_chat_template(messages, tokenize=False)
llm = LLM(model=model_id, tensor_parallel_size=number_gpus, max_model_len=max_model_len)
outputs = llm.generate(prompts, sampling_params)
generated_text = outputs[0].outputs[0].text
print(generated_text)
vLLM aslo supports OpenAI-compatible serving. See the documentation for more details.
Deploy on Red Hat AI Inference Server
$ podman run --rm -it --device nvidia.com/gpu=all -p 8000:8000 \
--ipc=host \
--env "HUGGING_FACE_HUB_TOKEN=$HF_TOKEN" \
--env "HF_HUB_OFFLINE=0" -v ~/.cache/vllm:/home/vllm/.cache \
--name=vllm \
registry.access.redhat.com/rhaiis/rh-vllm-cuda \
vllm serve \
--tensor-parallel-size 8 \
--max-model-len 32768 \
--enforce-eager --model RedHatAI/Qwen2.5-7B-Instruct-quantized.w4a16
See Red Hat AI Inference Server documentation for more details.
Deploy on Red Hat Enterprise Linux AI
# Download model from Red Hat Registry via docker
# Note: This downloads the model to ~/.cache/instructlab/models unless --model-dir is specified.
ilab model download --repository docker://registry.redhat.io/rhelai1/qwen2-5-7b-instruct-quantized-w4a16:1.5
# Serve model via ilab
ilab model serve --model-path ~/.cache/instructlab/models/qwen2-5-7b-instruct-quantized-w4a16
# Chat with model
ilab model chat --model ~/.cache/instructlab/models/qwen2-5-7b-instruct-quantized-w4a16
See Red Hat Enterprise Linux AI documentation for more details.
Deploy on Red Hat Openshift AI
# Setting up vllm server with ServingRuntime
# Save as: vllm-servingruntime.yaml
apiVersion: serving.kserve.io/v1alpha1
kind: ServingRuntime
metadata:
name: vllm-cuda-runtime # OPTIONAL CHANGE: set a unique name
annotations:
openshift.io/display-name: vLLM NVIDIA GPU ServingRuntime for KServe
opendatahub.io/recommended-accelerators: '["nvidia.com/gpu"]'
labels:
opendatahub.io/dashboard: 'true'
spec:
annotations:
prometheus.io/port: '8080'
prometheus.io/path: '/metrics'
multiModel: false
supportedModelFormats:
- autoSelect: true
name: vLLM
containers:
- name: kserve-container
image: quay.io/modh/vllm:rhoai-2.20-cuda # CHANGE if needed. If AMD: quay.io/modh/vllm:rhoai-2.20-rocm
command:
- python
- -m
- vllm.entrypoints.openai.api_server
args:
- "--port=8080"
- "--model=/mnt/models"
- "--served-model-name={{.Name}}"
env:
- name: HF_HOME
value: /tmp/hf_home
ports:
- containerPort: 8080
protocol: TCP
# Attach model to vllm server. This is an NVIDIA template
# Save as: inferenceservice.yaml
apiVersion: serving.kserve.io/v1beta1
kind: InferenceService
metadata:
annotations:
openshift.io/display-name: Qwen2.5-7B-Instruct-quantized.w4a16 # OPTIONAL CHANGE
serving.kserve.io/deploymentMode: RawDeployment
name: Qwen2.5-7B-Instruct-quantized.w4a16 # specify model name. This value will be used to invoke the model in the payload
labels:
opendatahub.io/dashboard: 'true'
spec:
predictor:
maxReplicas: 1
minReplicas: 1
model:
modelFormat:
name: vLLM
name: ''
resources:
limits:
cpu: '2' # this is model specific
memory: 8Gi # this is model specific
nvidia.com/gpu: '1' # this is accelerator specific
requests: # same comment for this block
cpu: '1'
memory: 4Gi
nvidia.com/gpu: '1'
runtime: vllm-cuda-runtime # must match the ServingRuntime name above
storageUri: oci://registry.redhat.io/rhelai1/modelcar-qwen2-5-7b-instruct-quantized-w4a16:1.5
tolerations:
- effect: NoSchedule
key: nvidia.com/gpu
operator: Exists
# make sure first to be in the project where you want to deploy the model
# oc project <project-name>
# apply both resources to run model
# Apply the ServingRuntime
oc apply -f vllm-servingruntime.yaml
# Apply the InferenceService
oc apply -f qwen-inferenceservice.yaml
# Replace <inference-service-name> and <cluster-ingress-domain> below:
# - Run `oc get inferenceservice` to find your URL if unsure.
# Call the server using curl:
curl https://<inference-service-name>-predictor-default.<domain>/v1/chat/completions
-H "Content-Type: application/json" \
-d '{
"model": "Qwen2.5-7B-Instruct-quantized.w4a16",
"stream": true,
"stream_options": {
"include_usage": true
},
"max_tokens": 1,
"messages": [
{
"role": "user",
"content": "How can a bee fly when its wings are so small?"
}
]
}'
See Red Hat Openshift AI documentation for more details.
Creation
Creation details
This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below.from transformers import AutoModelForCausalLM, AutoTokenizer
from llmcompressor.modifiers.quantization import GPTQModifier
from llmcompressor.transformers import oneshot
from datasets import load_dataset
# Load model
model_stub = "Qwen/Qwen2.5-7B-Instruct"
model_name = model_stub.split("/")[-1]
num_samples = 3072
max_seq_len = 8192
tokenizer = AutoTokenizer.from_pretrained(model_stub)
model = AutoModelForCausalLM.from_pretrained(
model_stub,
device_map="auto",
torch_dtype="auto",
)
def preprocess_fn(example):
return {"text": tokenizer.apply_chat_template(example["messages"], add_generation_prompt=False, tokenize=False)}
ds = load_dataset("neuralmagic/LLM_compression_calibration", split="train")
ds = ds.map(preprocess_fn)
# Configure the quantization algorithm and scheme
recipe = GPTQModifier(
targets="Linear",
scheme="W4A16",
ignore=["lm_head"],
sequential_targets=["Qwen2DecoderLayer"],
dampening_frac=0.2,
)
# Apply quantization
oneshot(
model=model,
dataset=ds,
recipe=recipe,
max_seq_length=max_seq_len,
num_calibration_samples=num_samples,
)
# Save to disk in compressed-tensors format
save_path = model_name + "-quantized.w4a16"
model.save_pretrained(save_path)
tokenizer.save_pretrained(save_path)
print(f"Model and tokenizer saved to: {save_path}")
Evaluation
The model was evaluated on the OpenLLM leaderboard tasks (version 1) with the lm-evaluation-harness (commit 387Bbd54bc621086e05aa1b030d8d4d5635b25e6) and the vLLM engine, using the following command:
lm_eval \
--model vllm \
--model_args pretrained="neuralmagic/Qwen2.5-7B-Instruct-quantized.w4a16",dtype=auto,gpu_memory_utilization=0.5,max_model_len=4096,add_bos_token=True,enable_chunk_prefill=True,tensor_parallel_size=1 \
--tasks openllm \
--batch_size auto
Accuracy
Open LLM Leaderboard evaluation scores
Benchmark | Qwen2.5-7B-Instruct | Qwen2.5-7B-Instruct-quantized.w4a16 (this model) |
Recovery |
---|---|---|---|
MMLU (5-shot) | 74.24 | 73.19 | 98.6% |
ARC Challenge (25-shot) | 63.40 | 63.23 | 99.7% |
GSM-8K (5-shot, strict-match) | 80.36 | 80.59 | 100.3% |
Hellaswag (10-shot) | 81.52 | 80.65 | 98.9% |
Winogrande (5-shot) | 74.66 | 74.19 | 99.4% |
TruthfulQA (0-shot, mc2) | 64.76 | 64.27 | 99.3% |
Average | 73.16 | 72.69 | 98.6% |
- Downloads last month
- 356