|
--- |
|
language: |
|
- en |
|
- fr |
|
- de |
|
- es |
|
- pt |
|
- it |
|
- ja |
|
- ko |
|
- ru |
|
- zh |
|
- ar |
|
- fa |
|
- id |
|
- ms |
|
- ne |
|
- pl |
|
- ro |
|
- sr |
|
- sv |
|
- tr |
|
- uk |
|
- vi |
|
- hi |
|
- bn |
|
license: apache-2.0 |
|
library_name: vllm |
|
base_model: |
|
- mistralai/Mistral-Small-3.1-24B-Instruct-2503 |
|
pipeline_tag: image-text-to-text |
|
tags: |
|
- neuralmagic |
|
- redhat |
|
- llmcompressor |
|
- quantized |
|
- int8 |
|
--- |
|
|
|
# Mistral-Small-3.1-24B-Instruct-2503-quantized.w8a8 |
|
|
|
## Model Overview |
|
- **Model Architecture:** Mistral3ForConditionalGeneration |
|
- **Input:** Text / Image |
|
- **Output:** Text |
|
- **Model Optimizations:** |
|
- **Activation quantization:** INT8 |
|
- **Weight quantization:** INT8 |
|
- **Intended Use Cases:** It is ideal for: |
|
- Fast-response conversational agents. |
|
- Low-latency function calling. |
|
- Subject matter experts via fine-tuning. |
|
- Local inference for hobbyists and organizations handling sensitive data. |
|
- Programming and math reasoning. |
|
- Long document understanding. |
|
- Visual understanding. |
|
- **Out-of-scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages not officially supported by the model. |
|
- **Release Date:** 04/15/2025 |
|
- **Version:** 1.0 |
|
- **Model Developers:** Red Hat (Neural Magic) |
|
|
|
|
|
### Model Optimizations |
|
|
|
This model was obtained by quantizing activations and weights of [Mistral-Small-3.1-24B-Instruct-2503](https://huggingface.co/mistralai/Mistral-Small-3.1-24B-Instruct-2503) to INT8 data type. |
|
This optimization reduces the number of bits used to represent weights and activations from 16 to 8, reducing GPU memory requirements (by approximately 50%) and increasing matrix-multiply compute throughput (by approximately 2x). |
|
Weight quantization also reduces disk size requirements by approximately 50%. |
|
|
|
Only weights and activations of the linear operators within transformers blocks are quantized. |
|
Weights are quantized with a symmetric static per-channel scheme, whereas activations are quantized with a symmetric dynamic per-token scheme. |
|
A combination of the [SmoothQuant](https://arxiv.org/abs/2211.10438) and [GPTQ](https://arxiv.org/abs/2210.17323) algorithms is applied for quantization, as implemented in the [llm-compressor](https://github.com/vllm-project/llm-compressor) library. |
|
|
|
|
|
## Deployment |
|
|
|
This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below. |
|
|
|
```python |
|
from vllm import LLM, SamplingParams |
|
from transformers import AutoProcessor |
|
|
|
model_id = "RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-FP8-dynamic" |
|
number_gpus = 1 |
|
|
|
sampling_params = SamplingParams(temperature=0.7, top_p=0.8, max_tokens=256) |
|
processor = AutoProcessor.from_pretrained(model_id) |
|
|
|
messages = [{"role": "user", "content": "Give me a short introduction to large language model."}] |
|
|
|
prompts = processor.apply_chat_template(messages, add_generation_prompt=True, tokenize=False) |
|
|
|
llm = LLM(model=model_id, tensor_parallel_size=number_gpus) |
|
|
|
outputs = llm.generate(prompts, sampling_params) |
|
|
|
generated_text = outputs[0].outputs[0].text |
|
print(generated_text) |
|
``` |
|
|
|
vLLM aslo supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details. |
|
|
|
## Creation |
|
|
|
<details> |
|
<summary>Creation details</summary> |
|
This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below. |
|
|
|
|
|
```python |
|
from transformers import AutoProcessor |
|
from llmcompressor.modifiers.quantization import GPTQModifier |
|
from llmcompressor.modifiers.smoothquant import SmoothQuantModifier |
|
from llmcompressor.transformers import oneshot |
|
from llmcompressor.transformers.tracing import TraceableMistral3ForConditionalGeneration |
|
from datasets import load_dataset, interleave_datasets |
|
from PIL import Image |
|
import io |
|
|
|
# Load model |
|
model_stub = "mistralai/Mistral-Small-3.1-24B-Instruct-2503" |
|
model_name = model_stub.split("/")[-1] |
|
|
|
num_text_samples = 1024 |
|
num_vision_samples = 1024 |
|
max_seq_len = 8192 |
|
|
|
processor = AutoProcessor.from_pretrained(model_stub) |
|
|
|
model = TraceableMistral3ForConditionalGeneration.from_pretrained( |
|
model_stub, |
|
device_map="auto", |
|
torch_dtype="auto", |
|
) |
|
|
|
# Text-only data subset |
|
def preprocess_text(example): |
|
input = { |
|
"text": processor.apply_chat_template( |
|
example["messages"], |
|
add_generation_prompt=False, |
|
), |
|
"images": None, |
|
} |
|
tokenized_input = processor(**input, max_length=max_seq_len, truncation=True) |
|
tokenized_input["pixel_values"] = tokenized_input.get("pixel_values", None) |
|
tokenized_input["image_sizes"] = tokenized_input.get("image_sizes", None) |
|
return tokenized_input |
|
|
|
dst = load_dataset("neuralmagic/calibration", name="LLM", split="train").select(range(num_text_samples)) |
|
dst = dst.map(preprocess_text, remove_columns=dst.column_names) |
|
|
|
# Text + vision data subset |
|
def preprocess_vision(example): |
|
messages = [] |
|
image = None |
|
for message in example["messages"]: |
|
message_content = [] |
|
for content in message["content"]: |
|
if content["type"] == "text": |
|
message_content.append({"type": "text", "text": content["text"]}) |
|
else: |
|
message_content.append({"type": "image"}) |
|
image = Image.open(io.BytesIO(content["image"])) |
|
|
|
messages.append( |
|
{ |
|
"role": message["role"], |
|
"content": message_content, |
|
} |
|
) |
|
|
|
input = { |
|
"text": processor.apply_chat_template( |
|
messages, |
|
add_generation_prompt=False, |
|
), |
|
"images": image, |
|
} |
|
tokenized_input = processor(**input, max_length=max_seq_len, truncation=True) |
|
tokenized_input["pixel_values"] = tokenized_input.get("pixel_values", None) |
|
tokenized_input["image_sizes"] = tokenized_input.get("image_sizes", None) |
|
return tokenized_input |
|
|
|
dsv = load_dataset("neuralmagic/calibration", name="VLM", split="train").select(range(num_vision_samples)) |
|
dsv = dsv.map(preprocess_vision, remove_columns=dsv.column_names) |
|
|
|
# Interleave subsets |
|
ds = interleave_datasets((dsv, dst)) |
|
|
|
# Configure the quantization algorithm and scheme |
|
recipe = [ |
|
SmoothQuantModifier( |
|
smoothing_strength=0.8, |
|
mappings=[ |
|
[["re:.*q_proj", "re:.*k_proj", "re:.*v_proj"], "re:.*input_layernorm"], |
|
[["re:.*gate_proj", "re:.*up_proj"], "re:.*post_attention_layernorm"], |
|
[["re:.*down_proj"], "re:.*up_proj"], |
|
], |
|
), |
|
GPTQModifier( |
|
ignore=["language_model.lm_head", "re:vision_tower.*", "re:multi_modal_projector.*"], |
|
sequential_targets=["MistralDecoderLayer"], |
|
dampening_frac=0.01, |
|
targets="Linear", |
|
scheme="W8A8", |
|
), |
|
] |
|
|
|
# Define data collator |
|
def data_collator(batch): |
|
import torch |
|
assert len(batch) == 1 |
|
collated = {} |
|
for k, v in batch[0].items(): |
|
if v is None: |
|
continue |
|
if k == "input_ids": |
|
collated[k] = torch.LongTensor(v) |
|
elif k == "pixel_values": |
|
collated[k] = torch.tensor(v, dtype=torch.bfloat16) |
|
else: |
|
collated[k] = torch.tensor(v) |
|
return collated |
|
|
|
|
|
# Apply quantization |
|
oneshot( |
|
model=model, |
|
dataset=ds, |
|
recipe=recipe, |
|
max_seq_length=max_seq_len, |
|
data_collator=data_collator, |
|
num_calibration_samples=num_text_samples + num_vision_samples, |
|
) |
|
|
|
# Save to disk in compressed-tensors format |
|
save_path = model_name + "-quantized.w8a8" |
|
model.save_pretrained(save_path) |
|
processor.save_pretrained(save_path) |
|
print(f"Model and tokenizer saved to: {save_path}") |
|
``` |
|
</details> |
|
|
|
|
|
|
|
## Evaluation |
|
|
|
The model was evaluated on the OpenLLM leaderboard tasks (version 1), MMLU-pro, GPQA, HumanEval and MBPP. |
|
Non-coding tasks were evaluated with [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness), whereas coding tasks were evaluated with a fork of [evalplus](https://github.com/neuralmagic/evalplus). |
|
[vLLM](https://docs.vllm.ai/en/stable/) is used as the engine in all cases. |
|
|
|
<details> |
|
<summary>Evaluation details</summary> |
|
|
|
**MMLU** |
|
``` |
|
lm_eval \ |
|
--model vllm \ |
|
--model_args pretrained="RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-quantized.w8a8",dtype=auto,gpu_memory_utilization=0.5,max_model_len=8192,enable_chunk_prefill=True,tensor_parallel_size=2 \ |
|
--tasks mmlu \ |
|
--num_fewshot 5 \ |
|
--apply_chat_template\ |
|
--fewshot_as_multiturn \ |
|
--batch_size auto |
|
``` |
|
|
|
**ARC Challenge** |
|
``` |
|
lm_eval \ |
|
--model vllm \ |
|
--model_args pretrained="RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-quantized.w8a8",dtype=auto,gpu_memory_utilization=0.5,max_model_len=8192,enable_chunk_prefill=True,tensor_parallel_size=2 \ |
|
--tasks arc_challenge \ |
|
--num_fewshot 25 \ |
|
--apply_chat_template\ |
|
--fewshot_as_multiturn \ |
|
--batch_size auto |
|
``` |
|
|
|
**GSM8k** |
|
``` |
|
lm_eval \ |
|
--model vllm \ |
|
--model_args pretrained="RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-quantized.w8a8",dtype=auto,gpu_memory_utilization=0.9,max_model_len=8192,enable_chunk_prefill=True,tensor_parallel_size=2 \ |
|
--tasks gsm8k \ |
|
--num_fewshot 8 \ |
|
--apply_chat_template\ |
|
--fewshot_as_multiturn \ |
|
--batch_size auto |
|
``` |
|
|
|
**Hellaswag** |
|
``` |
|
lm_eval \ |
|
--model vllm \ |
|
--model_args pretrained="RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-quantized.w8a8",dtype=auto,gpu_memory_utilization=0.5,max_model_len=8192,enable_chunk_prefill=True,tensor_parallel_size=2 \ |
|
--tasks hellaswag \ |
|
--num_fewshot 10 \ |
|
--apply_chat_template\ |
|
--fewshot_as_multiturn \ |
|
--batch_size auto |
|
``` |
|
|
|
**Winogrande** |
|
``` |
|
lm_eval \ |
|
--model vllm \ |
|
--model_args pretrained="RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-quantized.w8a8",dtype=auto,gpu_memory_utilization=0.5,max_model_len=8192,enable_chunk_prefill=True,tensor_parallel_size=2 \ |
|
--tasks winogrande \ |
|
--num_fewshot 5 \ |
|
--apply_chat_template\ |
|
--fewshot_as_multiturn \ |
|
--batch_size auto |
|
``` |
|
|
|
**TruthfulQA** |
|
``` |
|
lm_eval \ |
|
--model vllm \ |
|
--model_args pretrained="RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-quantized.w8a8",dtype=auto,gpu_memory_utilization=0.5,max_model_len=8192,enable_chunk_prefill=True,tensor_parallel_size=2 \ |
|
--tasks truthfulqa \ |
|
--num_fewshot 0 \ |
|
--apply_chat_template\ |
|
--batch_size auto |
|
``` |
|
|
|
**MMLU-pro** |
|
``` |
|
lm_eval \ |
|
--model vllm \ |
|
--model_args pretrained="RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-quantized.w8a8",dtype=auto,gpu_memory_utilization=0.5,max_model_len=8192,enable_chunk_prefill=True,tensor_parallel_size=2 \ |
|
--tasks mmlu_pro \ |
|
--num_fewshot 5 \ |
|
--apply_chat_template\ |
|
--fewshot_as_multiturn \ |
|
--batch_size auto |
|
``` |
|
|
|
**MMMU** |
|
``` |
|
lm_eval \ |
|
--model vllm \ |
|
--model_args pretrained="RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-quantized.w8a8",dtype=auto,gpu_memory_utilization=0.9,max_images=8,enable_chunk_prefill=True,tensor_parallel_size=2 \ |
|
--tasks mmmu \ |
|
--apply_chat_template\ |
|
--batch_size auto |
|
``` |
|
|
|
**ChartQA** |
|
``` |
|
lm_eval \ |
|
--model vllm \ |
|
--model_args pretrained="RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-quantized.w8a8",dtype=auto,gpu_memory_utilization=0.9,max_images=8,enable_chunk_prefill=True,tensor_parallel_size=2 \ |
|
--tasks chartqa \ |
|
--apply_chat_template\ |
|
--batch_size auto |
|
``` |
|
|
|
**Coding** |
|
|
|
The commands below can be used for mbpp by simply replacing the dataset name. |
|
|
|
*Generation* |
|
``` |
|
python3 codegen/generate.py \ |
|
--model RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-quantized.w8a8 \ |
|
--bs 16 \ |
|
--temperature 0.2 \ |
|
--n_samples 50 \ |
|
--root "." \ |
|
--dataset humaneval |
|
|
|
``` |
|
|
|
*Sanitization* |
|
``` |
|
python3 evalplus/sanitize.py \ |
|
humaneval/RedHatAI--Mistral-Small-3.1-24B-Instruct-2503-quantized.w8a8_vllm_temp_0.2 |
|
``` |
|
|
|
*Evaluation* |
|
``` |
|
evalplus.evaluate \ |
|
--dataset humaneval \ |
|
--samples humaneval/RedHatAI--Mistral-Small-3.1-24B-Instruct-2503-quantized.w8a8_vllm_temp_0.2-sanitized |
|
``` |
|
</details> |
|
|
|
### Accuracy |
|
|
|
<table> |
|
<tr> |
|
<th>Category |
|
</th> |
|
<th>Benchmark |
|
</th> |
|
<th>Mistral-Small-3.1-24B-Instruct-2503 |
|
</th> |
|
<th>Mistral-Small-3.1-24B-Instruct-2503-quantized.w8a8<br>(this model) |
|
</th> |
|
<th>Recovery |
|
</th> |
|
</tr> |
|
<tr> |
|
<td rowspan="7" ><strong>OpenLLM v1</strong> |
|
</td> |
|
<td>MMLU (5-shot) |
|
</td> |
|
<td>80.67 |
|
</td> |
|
<td>80.40 |
|
</td> |
|
<td>99.7% |
|
</td> |
|
</tr> |
|
<tr> |
|
<td>ARC Challenge (25-shot) |
|
</td> |
|
<td>72.78 |
|
</td> |
|
<td>73.46 |
|
</td> |
|
<td>100.9% |
|
</td> |
|
</tr> |
|
<tr> |
|
<td>GSM-8K (5-shot, strict-match) |
|
</td> |
|
<td>65.35 |
|
</td> |
|
<td>70.58 |
|
</td> |
|
<td>108.0% |
|
</td> |
|
</tr> |
|
<tr> |
|
<td>Hellaswag (10-shot) |
|
</td> |
|
<td>83.70 |
|
</td> |
|
<td>82.26 |
|
</td> |
|
<td>98.3% |
|
</td> |
|
</tr> |
|
<tr> |
|
<td>Winogrande (5-shot) |
|
</td> |
|
<td>83.74 |
|
</td> |
|
<td>80.90 |
|
</td> |
|
<td>96.6% |
|
</td> |
|
</tr> |
|
<tr> |
|
<td>TruthfulQA (0-shot, mc2) |
|
</td> |
|
<td>70.62 |
|
</td> |
|
<td>69.15 |
|
</td> |
|
<td>97.9% |
|
</td> |
|
</tr> |
|
<tr> |
|
<td><strong>Average</strong> |
|
</td> |
|
<td><strong>76.14</strong> |
|
</td> |
|
<td><strong>76.13</strong> |
|
</td> |
|
<td><strong>100.0%</strong> |
|
</td> |
|
</tr> |
|
<tr> |
|
<td rowspan="3" ><strong></strong> |
|
</td> |
|
<td>MMLU-Pro (5-shot) |
|
</td> |
|
<td>67.25 |
|
</td> |
|
<td>66.54 |
|
</td> |
|
<td>98.9% |
|
</td> |
|
</tr> |
|
<tr> |
|
<td>GPQA CoT main (5-shot) |
|
</td> |
|
<td>42.63 |
|
</td> |
|
<td>44.64 |
|
</td> |
|
<td>104.7% |
|
</td> |
|
</tr> |
|
<tr> |
|
<td>GPQA CoT diamond (5-shot) |
|
</td> |
|
<td>45.96 |
|
</td> |
|
<td>41.92 |
|
</td> |
|
<td>91.2% |
|
</td> |
|
</tr> |
|
<tr> |
|
<td rowspan="4" ><strong>Coding</strong> |
|
</td> |
|
<td>HumanEval pass@1 |
|
</td> |
|
<td>84.70 |
|
</td> |
|
<td>84.20 |
|
</td> |
|
<td>99.4% |
|
</td> |
|
</tr> |
|
<tr> |
|
<td>HumanEval+ pass@1 |
|
</td> |
|
<td>79.50 |
|
</td> |
|
<td>81.00 |
|
</td> |
|
<td>101.9% |
|
</td> |
|
</tr> |
|
<tr> |
|
<td>MBPP pass@1 |
|
</td> |
|
<td>71.10 |
|
</td> |
|
<td>72.10 |
|
</td> |
|
<td>101.4% |
|
</td> |
|
</tr> |
|
<tr> |
|
<td>MBPP+ pass@1 |
|
</td> |
|
<td>60.60 |
|
</td> |
|
<td>62.10 |
|
</td> |
|
<td>100.7% |
|
</td> |
|
</tr> |
|
<tr> |
|
<td rowspan="2" ><strong>Vision</strong> |
|
</td> |
|
<td>MMMU (0-shot) |
|
</td> |
|
<td>52.11 |
|
</td> |
|
<td>53.11 |
|
</td> |
|
<td>101.9% |
|
</td> |
|
</tr> |
|
<tr> |
|
<td>ChartQA (0-shot) |
|
</td> |
|
<td>81.36 |
|
</td> |
|
<td>82.36 |
|
</td> |
|
<td>101.2% |
|
</td> |
|
</tr> |
|
</table> |
|
|
|
|