|
--- |
|
tags: |
|
- w4a16 |
|
- int4 |
|
- vllm |
|
- vision |
|
license: apache-2.0 |
|
license_link: https://huggingface.co/datasets/choosealicense/licenses/blob/main/markdown/apache-2.0.md |
|
language: |
|
- en |
|
base_model: meta-llama/Llama-3.2-11B-Vision-Instruct |
|
library_name: transformers |
|
--- |
|
|
|
# |
|
Llama-3.2-11B-Vision-Instruct-quantized.w4a16 |
|
|
|
## Model Overview |
|
- **Model Architecture:** Llama-3.2-11B-Vision-Instruct |
|
- **Input:** Vision-Text |
|
- **Output:** Text |
|
- **Model Optimizations:** |
|
- **Weight quantization:** INT4 |
|
- **Activation quantization:** FP16 |
|
- **Release Date:** 1/31/2025 |
|
- **Version:** 1.0 |
|
- **Model Developers:** Neural Magic |
|
|
|
Quantized version of [meta-llama/Llama-3.2-11B-Vision-Instruct](https://huggingface.co/meta-llama/Llama-3.2-11B-Vision-Instruct). |
|
|
|
### Model Optimizations |
|
|
|
This model was obtained by quantizing the weights of [meta-llama/Llama-3.2-11B-Vision-Instruct](https://huggingface.co/meta-llama/Llama-3.2-11B-Vision-Instruct) to INT4 data type, ready for inference with vLLM >= 0.5.2. |
|
|
|
## Deployment |
|
|
|
### Use with vLLM |
|
|
|
This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below. |
|
|
|
```python |
|
from transformers import AutoProcessor |
|
from vllm.assets.image import ImageAsset |
|
from vllm import LLM, SamplingParams |
|
|
|
# prepare model |
|
model_id = "neuralmagic/Llama-3.2-11B-Vision-Instruct-quantized.w4a16" |
|
llm = LLM( |
|
model=model_id, |
|
max_model_len=4096, |
|
max_num_seqs=16, |
|
limit_mm_per_prompt={"image": 1}, |
|
) |
|
processor = AutoProcessor.from_pretrained(model_id) |
|
|
|
|
|
# prepare inputs |
|
question = "What is the content of this image?" |
|
messages = [ |
|
{ |
|
"role": "user", |
|
"content": [ |
|
{"type": "image"}, |
|
{"type": "text", "text": f"{question}"}, |
|
], |
|
}, |
|
] |
|
prompt = processor.apply_chat_template( |
|
messages, add_generation_prompt=True,tokenize=False |
|
) |
|
image = ImageAsset("cherry_blossom").pil_image.convert("RGB") |
|
inputs = { |
|
"prompt": prompt, |
|
"multi_modal_data": { |
|
"image": image |
|
}, |
|
} |
|
|
|
# generate response |
|
print("========== SAMPLE GENERATION ==============") |
|
outputs = llm.generate(inputs, SamplingParams(temperature=0.2, max_tokens=64)) |
|
print(f"PROMPT : {outputs[0].prompt}") |
|
print(f"RESPONSE: {outputs[0].outputs[0].text}") |
|
print("==========================================") |
|
``` |
|
|
|
vLLM also supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details. |
|
|
|
## Creation |
|
|
|
This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below as part a multimodal announcement blog. |
|
|
|
```python |
|
import requests |
|
import torch |
|
from PIL import Image |
|
from transformers import AutoProcessor |
|
|
|
from llmcompressor.modifiers.quantization import GPTQModifier |
|
from llmcompressor.transformers import oneshot |
|
from llmcompressor.transformers.tracing import TraceableMllamaForConditionalGeneration |
|
|
|
# Load model. |
|
model_id = "meta-llama/Llama-3.2-11B-Vision-Instruct" |
|
model = TraceableMllamaForConditionalGeneration.from_pretrained( |
|
model_id, device_map="auto", torch_dtype="auto" |
|
) |
|
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True) |
|
|
|
# Oneshot arguments |
|
DATASET_ID = "flickr30k" |
|
DATASET_SPLIT = {"calibration": "test[:512]"} |
|
NUM_CALIBRATION_SAMPLES = 512 |
|
MAX_SEQUENCE_LENGTH = 2048 |
|
|
|
|
|
# Define a oneshot data collator for multimodal inputs. |
|
def data_collator(batch): |
|
assert len(batch) == 1 |
|
return {key: torch.tensor(value) for key, value in batch[0].items()} |
|
|
|
|
|
# Recipe |
|
recipe = [ |
|
GPTQModifier( |
|
targets="Linear", |
|
scheme="W4A16", |
|
ignore=["re:.*lm_head", "re:multi_modal_projector.*", "re:vision_model.*"], |
|
), |
|
] |
|
|
|
# Perform oneshot |
|
oneshot( |
|
model=model, |
|
tokenizer=model_id, |
|
dataset=DATASET_ID, |
|
splits=DATASET_SPLIT, |
|
recipe=recipe, |
|
max_seq_length=MAX_SEQUENCE_LENGTH, |
|
num_calibration_samples=NUM_CALIBRATION_SAMPLES, |
|
trust_remote_code_model=True, |
|
data_collator=data_collator, |
|
) |
|
``` |
|
|
|
## License |
|
|
|
License: Use of Llama 3.2 is governed by the [Llama 3.2 Community License](https://github.com/meta-llama/llama-models/blob/main/models/llama3_2/LICENSE) (a custom, commercial license agreement). |
|
|