kylesayrs's picture
Update README.md
7f66874 verified
---
tags:
- w4a16
- int4
- vllm
- vision
license: apache-2.0
license_link: https://huggingface.co/datasets/choosealicense/licenses/blob/main/markdown/apache-2.0.md
language:
- en
base_model: meta-llama/Llama-3.2-11B-Vision-Instruct
library_name: transformers
---
#
Llama-3.2-11B-Vision-Instruct-quantized.w4a16
## Model Overview
- **Model Architecture:** Llama-3.2-11B-Vision-Instruct
- **Input:** Vision-Text
- **Output:** Text
- **Model Optimizations:**
- **Weight quantization:** INT4
- **Activation quantization:** FP16
- **Release Date:** 1/31/2025
- **Version:** 1.0
- **Model Developers:** Neural Magic
Quantized version of [meta-llama/Llama-3.2-11B-Vision-Instruct](https://huggingface.co/meta-llama/Llama-3.2-11B-Vision-Instruct).
### Model Optimizations
This model was obtained by quantizing the weights of [meta-llama/Llama-3.2-11B-Vision-Instruct](https://huggingface.co/meta-llama/Llama-3.2-11B-Vision-Instruct) to INT4 data type, ready for inference with vLLM >= 0.5.2.
## Deployment
### Use with vLLM
This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.
```python
from transformers import AutoProcessor
from vllm.assets.image import ImageAsset
from vllm import LLM, SamplingParams
# prepare model
model_id = "neuralmagic/Llama-3.2-11B-Vision-Instruct-quantized.w4a16"
llm = LLM(
model=model_id,
max_model_len=4096,
max_num_seqs=16,
limit_mm_per_prompt={"image": 1},
)
processor = AutoProcessor.from_pretrained(model_id)
# prepare inputs
question = "What is the content of this image?"
messages = [
{
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": f"{question}"},
],
},
]
prompt = processor.apply_chat_template(
messages, add_generation_prompt=True,tokenize=False
)
image = ImageAsset("cherry_blossom").pil_image.convert("RGB")
inputs = {
"prompt": prompt,
"multi_modal_data": {
"image": image
},
}
# generate response
print("========== SAMPLE GENERATION ==============")
outputs = llm.generate(inputs, SamplingParams(temperature=0.2, max_tokens=64))
print(f"PROMPT : {outputs[0].prompt}")
print(f"RESPONSE: {outputs[0].outputs[0].text}")
print("==========================================")
```
vLLM also supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.
## Creation
This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below as part a multimodal announcement blog.
```python
import requests
import torch
from PIL import Image
from transformers import AutoProcessor
from llmcompressor.modifiers.quantization import GPTQModifier
from llmcompressor.transformers import oneshot
from llmcompressor.transformers.tracing import TraceableMllamaForConditionalGeneration
# Load model.
model_id = "meta-llama/Llama-3.2-11B-Vision-Instruct"
model = TraceableMllamaForConditionalGeneration.from_pretrained(
model_id, device_map="auto", torch_dtype="auto"
)
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
# Oneshot arguments
DATASET_ID = "flickr30k"
DATASET_SPLIT = {"calibration": "test[:512]"}
NUM_CALIBRATION_SAMPLES = 512
MAX_SEQUENCE_LENGTH = 2048
# Define a oneshot data collator for multimodal inputs.
def data_collator(batch):
assert len(batch) == 1
return {key: torch.tensor(value) for key, value in batch[0].items()}
# Recipe
recipe = [
GPTQModifier(
targets="Linear",
scheme="W4A16",
ignore=["re:.*lm_head", "re:multi_modal_projector.*", "re:vision_model.*"],
),
]
# Perform oneshot
oneshot(
model=model,
tokenizer=model_id,
dataset=DATASET_ID,
splits=DATASET_SPLIT,
recipe=recipe,
max_seq_length=MAX_SEQUENCE_LENGTH,
num_calibration_samples=NUM_CALIBRATION_SAMPLES,
trust_remote_code_model=True,
data_collator=data_collator,
)
```
## License
License: Use of Llama 3.2 is governed by the [Llama 3.2 Community License](https://github.com/meta-llama/llama-models/blob/main/models/llama3_2/LICENSE) (a custom, commercial license agreement).