EVA Qwen2.5-1.5BB v0.0

A small-scale RP/storywriting specialist model, full-parameter finetune of Qwen2.5-1.5B on mixture of synthetic and natural data.
It uses Celeste 70B 0.1 data mixture, greatly expanding it to improve versatility, creativity and "flavor" of the resulting model.
Unlike EVA-D 1.5B v0.0, this model was created without using DistillKit, and unlike other versions of EVA, Spectrum wasn't used either, since layer freezing is inefficient at small scale.


Training data:

  • Celeste 70B 0.1 data mixture minus Opus Instruct subset. See that model's card for details.
  • Kalomaze's Opus_Instruct_25k dataset, filtered for refusals.
  • A subset (1k rows) of ChatGPT-4o-WritingPrompts by Gryphe
  • A subset (2k rows) of Sonnet3.5-Charcards-Roleplay by Gryphe
  • Synthstruct and SynthRP datasets by Epiculous
  • A subset from Dolphin-2.9.3, including filtered version of not_samantha and a small subset of systemchat.

Training time and hardware:

  • 9 hours on 4x3090Ti

Model was created by Kearm, Auri and Cahvay.

Special thanks:

  • to Cahvay for his work on investigating and reprocessing the corrupted dataset, removing the single biggest source of data poisoning.
  • to Gryphe, Lemmy, Kalomaze, Nopm, Epiculous and CognitiveComputations for the data
  • and to Allura-org for support, feedback, beta-testing and doing quality control of EVA models.

Built with Axolotl

See axolotl config

axolotl version: 0.4.1

base_model: /media/kearm/Disk_2/HF_FAST_MoE_Fodder/Qwen2.5-1.5B

load_in_8bit: false
load_in_4bit: false
strict: false

plugins:
  - axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_swiglu: true
liger_fused_linear_cross_entropy: true

# plugins:
#   - axolotl.integrations.spectrum.SpectrumPlugin

# spectrum_top_fraction: 0.5
# # Optional if using a pre-scanned model as your base_model. Useful if using a model mirror
# spectrum_model_name: Qwen/Qwen2.5-32B

datasets:
  - path: datasets/Celeste_Filtered_utf8fix.jsonl
    type: sharegpt
  - path: datasets/deduped_not_samantha_norefusals.jsonl
    type: sharegpt
  - path: datasets/deduped_SynthRP-Gens_processed_ShareGPT_converted_cleaned.jsonl
    type: sharegpt
  - path: datasets/deduped_Synthstruct-Gens_processed_sharegpt_converted_cleaned.jsonl
    type: sharegpt
  - path: datasets/Gryphe-4o-WP-filtered-sharegpt_utf8fix.jsonl
    type: sharegpt
  - path: datasets/Sonnet3-5-charcard-names-filtered-sharegpt_utf8fix.jsonl
    type: sharegpt
  - path: datasets/SystemChat_subset_filtered_sharegpt_utf8fix.jsonl
    type: sharegpt
  - path: datasets/S2.jsonl
    type: sharegpt
  - path: datasets/Turing.jsonl
    type: sharegpt

chat_template: chatml
shuffle_merged_datasets: true
val_set_size: 0.05
output_dir: EVA-Qwen2.5-1.5B-FFT-v0.0

sequence_len: 10240
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true

# adapter: qlora
# lora_model_dir:
# lora_r: 64
# lora_alpha: 128
# lora_dropout: 0.05
# lora_target_linear: true
# peft_use_dora: true

wandb_project: EVA-Qwen2.5-1.5B-FFT-v0.0
wandb_entity:
wandb_watch:
wandb_name: Unit-00
wandb_log_model:

gradient_accumulation_steps: 8
micro_batch_size: 1
num_epochs: 3
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 0.000005
max_grad_norm: 1.5

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: "unsloth"
gradient_checkpointing_kwargs:
   use_reentrant: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 20
evals_per_epoch: 4
saves_per_epoch: 4
save_safetensors: true
save_total_limit: 8
hub_model_id:
hub_strategy:
debug:
deepspeed: deepspeed_configs/zero3_bf16.json
weight_decay: 0.15
# fsdp:
#   - full_shard
#   - auto_wrap
# fsdp_config:
#   fsdp_limit_all_gathers: true
#   fsdp_sync_module_states: false
#   fsdp_offload_params: true
#   fsdp_cpu_ram_efficient_loading: true
#   fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
#   fsdp_transformer_layer_cls_to_wrap: Qwen2DecoderLayer
#   fsdp_activation_checkpointing: true
#   fsdp_state_dict_type: SHARDED_STATE_DICT  # Changed from FULL_STATE_DICT
#   fsdp_sharding_strategy: FULL_SHARD
#   fsdp_forward_prefetch: false  # Added
#   fsdp_backward_prefetch: "BACKWARD_PRE"  # Added
#   fsdp_backward_prefetch_limit: 1  # Added
#   fsdp_mixed_precision: BF16  # Added

Downloads last month
0
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ReadyArt/EVA-Qwen2.5-1.5B-v0.0_EXL2_8.0bpw_H8

Base model

Qwen/Qwen2.5-1.5B
Quantized
(38)
this model

Datasets used to train ReadyArt/EVA-Qwen2.5-1.5B-v0.0_EXL2_8.0bpw_H8

Collection including ReadyArt/EVA-Qwen2.5-1.5B-v0.0_EXL2_8.0bpw_H8