metadata
library_name: transformers
license: mit
base_model: FacebookAI/xlm-roberta-base
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: xlm-roberta-reddit-10
results: []
xlm-roberta-reddit-10
This model is a fine-tuned version of FacebookAI/xlm-roberta-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.7624
- Accuracy: 0.7675
- F1: 0.7491
- Precision: 0.7711
- Recall: 0.7457
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 12
- eval_batch_size: 12
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
---|---|---|---|---|---|---|---|
No log | 1.0 | 123 | 1.5725 | 0.4236 | 0.2919 | 0.2961 | 0.339 |
No log | 2.0 | 246 | 1.1745 | 0.6051 | 0.4965 | 0.6084 | 0.5353 |
No log | 3.0 | 369 | 0.9715 | 0.7166 | 0.6859 | 0.7459 | 0.6734 |
No log | 4.0 | 492 | 0.7882 | 0.7834 | 0.7679 | 0.7870 | 0.7656 |
1.3067 | 5.0 | 615 | 0.7624 | 0.7675 | 0.7491 | 0.7711 | 0.7457 |
Framework versions
- Transformers 4.48.3
- Pytorch 2.6.0+cu124
- Datasets 3.4.0
- Tokenizers 0.21.1