File size: 16,788 Bytes
169a2f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
<br>

<p align="center">
    <img src="assets/logo.jpg" width="400"/>
<p>
<br>

<p align="center">
        Qwen-VL <a href="https://modelscope.cn/models/qwen/Qwen-VL/summary">🤖 <a> | <a href="https://huggingface.co/Qwen/Qwen-VL">🤗</a>&nbsp | Qwen-VL-Chat <a href="https://modelscope.cn/models/qwen/Qwen-VL-Chat/summary">🤖 <a>| <a href="https://huggingface.co/Qwen/Qwen-VL-Chat">🤗</a>&nbsp | &nbsp<a href="https://modelscope.cn/studios/qwen/Qwen-VL-Chat-Demo/summary">Demo</a>&nbsp | &nbsp<a href="https://github.com/QwenLM/Qwen-VL/blob/main/visual_memo.md">Report</a>&nbsp&nbsp | &nbsp&nbsp<a href="https://discord.gg/9bjvspyu">Discord</a>

</p>
<br>

<p align="center">
        <a href="README_CN.md">中文</a>&nbsp | &nbsp English
</p>
<br><br>

**Qwen-VL** (Qwen Large Vision Language Model) is the visual multimodal version of the large model series, Qwen (abbr. Tongyi Qianwen), proposed by Alibaba Cloud. Qwen-VL accepts image, text, and bounding box as inputs, outputs text and bounding box. The features of Qwen-VL include:
- **Strong performance**: It significantly surpasses existing open-source Large Vision Language Models (LVLM) under similar scale settings on multiple English evaluation benchmarks (including Zero-shot caption, VQA, DocVQA, and Grounding).
- **Multi-lingual LVLM support text recognization**: Qwen-VL naturally supports multi-lingual conversation, and it promotes end-to-end recognition of Chinese and English bi-lingual text in images.
- **Multi-image interleaved conversations**: This feature allows for the input and comparison of multiple images, as well as the ability to specify questions related to the images and engage in multi-image storytelling.
- **First generalist model support grounding in Chinese**: Detecting bounding boxes through open-domain language expression in both Chinese and English.
- **Fine-grained recognization and understanding**: Compared to the 224 resolution currently used by other open-source LVLM, the 448 resolution promotes fine-grained text recognition, document QA, and bounding box annotation.

We release two models of the Qwen-VL series:
- Qwen-VL: The pre-trained LVLM model uses Qwen-7B as the initialization of the LLM, and [Openclip ViT-bigG](https://github.com/mlfoundations/open_clip) as the initialization of the visual encoder. And connects them with a randomly initialized cross-attention layer. Qwen-VL was trained on about 1.5B image-text paired data. The final image input resolution is 448.
- Qwen-VL-Chat: A multimodal LLM-based AI assistant, which is trained with alignment techniques.

For more details about Qwen-VL, please refer to our [technical memo](visual_memo.md).

## Evaluation

We evaluated the model's ability from two perspectives:
1. **Standard Benchmarks**: We evaluate the model's basic task capabilities on four major categories of multimodal tasks:
   - Zero-shot Caption: Evaluate model's zero-shot image captioning ability on unseen datasets;
   - General VQA: Evaluate the general question-answering ability of pictures, such as the judgment, color, number, category, etc;
   - Text-based VQA: Evaluate the model's ability to recognize text in pictures, such as document QA, chart QA, etc;
   - Referring Expression Comprehension: Evaluate the ability to localize a target object in an image described by a referring expression.

2. **TouchStone**: To evaluate the overall text-image dialogue capability and alignment level with humans, we have constructed a benchmark called TouchStone, which is based on scoring with GPT4 to evaluate the LVLM model.
   - The TouchStone benchmark covers a total of 300+ images, 800+ questions, and 27 categories. Such as attribute-based Q&A, celebrity recognition, writing poetry, summarizing multiple images, product comparison, math problem solving, etc;
   - In order to break the current limitation of GPT4 in terms of direct image input, TouchStone provides fine-grained image annotations by human labeling. These detailed annotations, along with the questions and the model's output, are then presented to GPT4 for scoring.
   - The benchmark includes both English and Chinese versions.

The results of the evaluation are as follows:

Qwen-VL outperforms current SOTA generalist models on multiple VL tasks and has a more comprehensive coverage in terms of capability range.

<p align="center">
    <img src="assets/radar.png" width="600"/>
<p>

### Zero-shot Caption & General VQA
<table>
<thead>
  <tr>
    <th rowspan="2">Model type</th>
    <th rowspan="2">Model</th>
    <th colspan="2">Zero-shot Caption</th>
    <th colspan="5">General VQA</th>
  </tr>
  <tr>
    <th>NoCaps</th>
    <th>Flickr30K</th>
    <th>VQAv2<sup>dev</sup></th>
    <th>OK-VQA</th>
    <th>GQA</th>
    <th>SciQA-Img<br>(0-shot)</th>
    <th>VizWiz<br>(0-shot)</th>
  </tr>
</thead>
<tbody align="center">
  <tr>
    <td rowspan="12">Generalist<br>Models</td>
    <td>Flamingo-9B</td>
    <td>-</td>
    <td>61.5</td>
    <td>51.8</td>
    <td>44.7</td>
    <td>-</td>
    <td>-</td>
    <td>28.8</td>
  </tr>
  <tr>
    <td>Flamingo-80B</td>
    <td>-</td>
    <td>67.2</td>
    <td>56.3</td>
    <td>50.6</td>
    <td>-</td>
    <td>-</td>
    <td>31.6</td>
  </tr>
  <tr>
    <td>Unified-IO-XL</td>
    <td>100.0</td>
    <td>-</td>
    <td>77.9</td>
    <td>54.0</td>
    <td>-</td>
    <td>-</td>
    <td>-</td>
  </tr>
  <tr>
    <td>Kosmos-1</td>
    <td>-</td>
    <td>67.1</td>
    <td>51.0</td>
    <td>-</td>
    <td>-</td>
    <td>-</td>
    <td>29.2</td>
  </tr>
  <tr>
    <td>Kosmos-2</td>
    <td>-</td>
    <td>66.7</td>
    <td>45.6</td>
    <td>-</td>
    <td>-</td>
    <td>-</td>
    <td>-</td>
  </tr>
  <tr>
    <td>BLIP-2 (Vicuna-13B)</td>
    <td>103.9</td>
    <td>71.6</td>
    <td>65.0</td>
    <td>45.9</td>
    <td>32.3</td>
    <td>61.0</td>
    <td>19.6</td>
  </tr>
  <tr>
    <td>InstructBLIP (Vicuna-13B)</td>
    <td><strong>121.9</strong></td>
    <td>82.8</td>
    <td>-</td>
    <td>-</td>
    <td>49.5</td>
    <td>63.1</td>
    <td>33.4</td>
  </tr>
  <tr>
    <td>Shikra (Vicuna-13B)</td>
    <td>-</td>
    <td>73.9</td>
    <td>77.36</td>
    <td>47.16</td>
    <td>-</td>
    <td>-</td>
    <td>-</td>
  </tr>
  <tr>
    <td><strong>Qwen-VL (Qwen-7B)</strong></td>
    <td>121.4</td>
    <td><b>85.8</b></td>
    <td><b>78.8</b></td>
    <td><b>58.6</b></td>
    <td><b>59.3</b></td>
    <td><b>67.1</b></td>
    <td><b>34.3</b></td>
  </tr>
  <tr>
    <td>Qwen-VL (4-shot)</td>
    <td>-</td>
    <td>-</td>
    <td>-</td>
    <td>63.6</td>
    <td>-</td>
    <td>-</td>
    <td>39.1</td>
  </tr>
  <tr>
    <td>Qwen-VL-Chat</td>
    <td>-</td>
    <td>81.5</td>
    <td>-</td>
    <td>56.69</td>
    <td>-</td>
    <td>68.22</td>
    <td>37.05</td>
  </tr>
  <tr>
    <td>Qwen-VL-Chat (4-shot)</td>
    <td>-</td>
    <td>-</td>
    <td>-</td>
    <td>60.6</td>
    <td>-</td>
    <td>-</td>
    <td>45.5</td>
  </tr>
  <tr>
    <td>Previous SOTA<br>(Per Task Fine-tuning)</td>
    <td>-</td>
    <td>127.0<br>(PALI-17B)</td>
    <td>84.5<br>(InstructBLIP<br>-FlanT5-XL)</td>
    <td>86.1<br>(PALI-X<br>-55B)</td>
    <td>66.1<br>(PALI-X<br>-55B)</td>
    <td>72.1<br>(CFR)</td>
    <td>92.53<br>(LLaVa+<br>GPT-4)</td>
    <td>70.9<br>(PALI-X<br>-55B)</td>
  </tr>
</tbody>
</table>

- For zero-shot image captioning, Qwen-VL achieves the **SOTA** on Flickr30K and competitive results on Nocaps with InstructBlip.
- For general VQA, Qwen-VL achieves the **SOTA** under the same generalist LVLM scale settings.

### Text-based VQA (focuse on text understanding capabilities in images)

<table>
<thead>
  <tr>
    <th>Model type</th>
    <th>Model</th>
    <th>TextVQA</th>
    <th>DocVQA</th>
    <th>ChartQA</th>
    <th>AI2D</th>
    <th>OCR-VQA</th>
  </tr>
</thead>
<tbody align="center">
  <tr>
    <td rowspan="5">Generalist Models</td>
    <td>BLIP-2 (Vicuna-13B)</td>
    <td>42.4</td>
    <td>-</td>
    <td>-</td>
    <td>-</td>
    <td>-</td>
  </tr>
  <tr>
    <td>InstructBLIP (Vicuna-13B)</td>
    <td>50.7</td>
    <td>-</td>
    <td>-</td>
    <td>-</td>
    <td>-</td>
  </tr>
  <tr>
    <td>mPLUG-DocOwl (LLaMA-7B)</td>
    <td>52.6</td>
    <td>62.2</td>
    <td>57.4</td>
    <td>-</td>
    <td>-</td>
  </tr>
  <tr>
    <td>Pic2Struct-Large (1.3B)</td>
    <td>-</td>
    <td><b>76.6</b></td>
    <td>58.6</td>
    <td>42.1</td>
    <td>71.3</td>
  </tr>
  <tr>
    <td>Qwen-VL (Qwen-7B)</td>
    <td><b>63.8</b></td>
    <td>65.1</td>
    <td><b>65.7</b></td>
    <td><b>62.3</b></td>
    <td><b>75.7</b></td>
  </tr>
  <tr>
    <td>Specialist SOTAs<br>(Specialist/Finetuned)</td>
    <td>PALI-X-55B (Single-task FT)<br>(Without OCR Pipeline)</td>
    <td>71.44</td>
    <td>80.0</td>
    <td>70.0</td>
    <td>81.2</td>
    <td>75.0</td>
  </tr>
</tbody>
</table>

- In text-related recognition/QA evaluation, Qwen-VL achieves the SOTA under the generalist LVLM scale settings.
- Resolution is important for several above evaluations. While most open-source LVLM models with 224 resolution are incapable of these evaluations or can only solve these by cutting images, Qwen-VL scales the resolution to 448 so that it can be evaluated end-to-end. Qwen-VL even outperforms Pic2Struct-Large models of 1024 resolution on some tasks.

### Referring Expression Comprehension
<table>
<thead>
  <tr>
    <th rowspan="2">Model type</th>
    <th rowspan="2">Model</th>
    <th colspan="3">RefCOCO</th>
    <th colspan="3">RefCOCO+</th>
    <th colspan="2">RefCOCOg</th>
    <th>GRIT</th>
  </tr>
  <tr>
    <th>val</th>
    <th>test-A</th>
    <th>test-B</th>
    <th>val</th>
    <th>test-A</th>
    <th>test-B</th>
    <th>val-u</th>
    <th>test-u</th>
    <th>refexp</th>
  </tr>
</thead>
<tbody align="center">
  <tr>
    <td rowspan="8">Generalist Models</td>
    <td>GPV-2</td>
    <td>-</td>
    <td>-</td>
    <td>-</td>
    <td>-</td>
    <td>-</td>
    <td>-</td>
    <td>-</td>
    <td>-</td>
    <td>51.50</td>
  </tr>
  <tr>
    <td>OFA-L*</td>
    <td>79.96</td>
    <td>83.67</td>
    <td>76.39</td>
    <td>68.29</td>
    <td>76.00</td>
    <td>61.75</td>
    <td>67.57</td>
    <td>67.58</td>
    <td>61.70</td>
  </tr>
  <tr>
    <td>Unified-IO</td>
    <td>-</td>
    <td>-</td>
    <td>-</td>
    <td>-</td>
    <td>-</td>
    <td>-</td>
    <td>-</td>
    <td>-</td>
    <td><b>78.61</b></td>
  </tr>
  <tr>
    <td>VisionLLM-H</td>
    <td></td>
    <td>86.70</td>
    <td>-</td>
    <td>-</td>
    <td>-</td>
    <td>-</td>
    <td>-</td>
    <td>-</td>
    <td>-</td>
  </tr>
  <tr>
    <td>Shikra-7B</td>
    <td>87.01</td>
    <td>90.61</td>
    <td>80.24 </td>
    <td>81.60</td>
    <td>87.36</td>
    <td>72.12</td>
    <td>82.27</td>
    <td>82.19</td>
    <td>69.34</td>
  </tr>
  <tr>
    <td>Shikra-13B</td>
    <td>87.83 </td>
    <td>91.11</td>
    <td>81.81</td>
    <td>82.89</td>
    <td>87.79</td>
    <td>74.41</td>
    <td>82.64</td>
    <td>83.16</td>
    <td>69.03</td>
  </tr>
  <tr>
    <td>Qwen-VL-7B</td>
    <td><b>89.36</b></td>
    <td>92.26</td>
    <td><b>85.34</b></td>
    <td><b>83.12</b></td>
    <td>88.25</td>
    <td><b>77.21</b></td>
    <td><b>85.58</b></td>
    <td><b>85.48</b></td>
    <td>78.22</td>
  </tr>
  <tr>
    <td>Qwen-VL-7B-Chat</td>
    <td><b>88.55</b></td>
    <td><b>92.27</b></td>
    <td>84.51</td>
    <td>82.82</td>
    <td><b>88.59</b></td>
    <td>-</td>
    <td>-</td>
    <td>-</td>
    <td>-</td>
  </tr>
  <tr>
    <td rowspan="3">Specialist SOTAs<br>(Specialist/Finetuned)</td>
    <td>G-DINO-L</td>
    <td>90.56&nbsp;&nbsp;</td>
    <td>93.19</td>
    <td>88.24</td>
    <td>82.75</td>
    <td>88.95</td>
    <td>75.92</td>
    <td>86.13</td>
    <td>87.02</td>
    <td>-</td>
  </tr>
  <tr>
    <td>UNINEXT-H</td>
    <td>92.64 </td>
    <td>94.33</td>
    <td>91.46</td>
    <td>85.24</td>
    <td>89.63</td>
    <td>79.79</td>
    <td>88.73</td>
    <td>89.37</td>
    <td>-</td>
  </tr>
  <tr>
    <td>ONE-PEACE</td>
    <td>92.58 </td>
    <td>94.18</td>
    <td>89.26</td>
    <td>88.77</td>
    <td>92.21</td>
    <td>83.23</td>
    <td>89.22</td>
    <td>89.27</td>
    <td>-</td>
  </tr>
</tbody>
</table>

- Qwen-VL achieves the **SOTA** in all above referring expression comprehension benchmarks.
- Qwen-VL has not been trained on any Chinese grounding data, but it can still generalize to the Chinese Grounding tasks in a zero-shot way by training Chinese Caption data and English Grounding data.

We provide all of the above evaluation scripts for reproducing our experimental results. Please read [eval/EVALUATION.md](eval/EVALUATION.md) for more information.

### Chat evaluation

TouchStone is a benchmark based on scoring with GPT4 to evaluate the abilities of the LVLM model on text-image dialogue and alignment levels with humans. It covers a total of 300+ images, 800+ questions, and 27 categories, such as attribute-based Q&A, celebrity recognition, writing poetry, summarizing multiple images, product comparison, math problem solving, etc. Please read [touchstone/README_CN.md](touchstone/README.md) for more information.

#### English evaluation

| Model         | Score |
|---------------|-------|
| PandaGPT      | 488.5 |
| MiniGPT4      | 531.7 |
| InstructBLIP  | 552.4 |
| LLaMA-AdapterV2 | 590.1 |
| mPLUG-Owl     | 605.4 |
| LLaVA         | 602.7 |
| Qwen-VL-Chat   | 645.2 |

#### Chinese evaluation

| Model         | Score |
|---------------|-------|
| VisualGLM     | 247.1 |
| Qwen-VL-Chat   | 401.2 |

Qwen-VL-Chat has achieved the best results in both Chinese and English alignment evaluation.

## Requirements

* python 3.8 and above
* pytorch 1.12 and above, 2.0 and above are recommended
* CUDA 11.4 and above are recommended (this is for GPU users)

## Quickstart

Below, we provide simple examples to show how to use Qwen-VL and Qwen-VL-Chat with 🤖 ModelScope and 🤗 Transformers.

Before running the code, make sure you have setup the environment and installed the required packages. Make sure you meet the above requirements, and then install the dependent libraries.

```bash
pip install -r requirements.txt
```

Now you can start with ModelScope or Transformers. More usage aboue vision encoder, please refer to [FAQ](FAQ.md).

#### 🤗 Transformers

To use Qwen-VL-Chat for the inference, all you need to do is to input a few lines of codes as demonstrated below. However, **please make sure that you are using the latest code.**

```python
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.generation import GenerationConfig
import torch
torch.manual_seed(1234)

# Note: The default behavior now has injection attack prevention off.
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen-VL-Chat", trust_remote_code=True)

# use bf16
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-VL-Chat", device_map="auto", trust_remote_code=True, bf16=True).eval()
# use fp16
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-VL-Chat", device_map="auto", trust_remote_code=True, fp16=True).eval()
# use cpu only
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-VL-Chat", device_map="cpu", trust_remote_code=True).eval()
# use cuda device
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-VL-Chat", device_map="cuda", trust_remote_code=True).eval()

# Specify hyperparameters for generation
model.generation_config = GenerationConfig.from_pretrained("Qwen/Qwen-VL-Chat", trust_remote_code=True)

# 1st dialogue turn
query = tokenizer.from_list_format([
    {'image': 'https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg'},
    {'text': '这是什么'},
])
response, history = model.chat(tokenizer, query=query, history=None)
print(response)
# 图中是一名年轻女子在沙滩上和她的狗玩耍,狗的品种可能是拉布拉多。她们坐在沙滩上,狗的前腿抬起来,似乎在和人类击掌。两人之间充满了信任和爱。

# 2st dialogue turn
response, history = model.chat(tokenizer, '输出"击掌"的检测框', history=history)
print(response)
# <ref>击掌</ref><box>(517,508),(589,611)</box>
image = tokenizer.draw_bbox_on_latest_picture(response, history)
if image:
  image.save('1.jpg')
else:
  print("no box")
```

<p align="center">
    <img src="assets/demo_highfive.jpeg" width="500"/>
<p>

## FAQ

If you meet problems, please refer to [FAQ](FAQ.md) and the issues first to search a solution before you launch a new issue.


## License Agreement

Researchers and developers are free to use the codes and model weights of both Qwen-7B and Qwen-7B-Chat. We also allow their commercial use. Check our license at [LICENSE](LICENSE) for more details.

## Contact Us

If you are interested to leave a message to either our research team or product team, feel free to send an email to qianwen[email protected].