simonJJJ commited on
Commit
169a2f6
·
1 Parent(s): 7c56786
.gitattributes CHANGED
@@ -34,3 +34,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
  SimSun.ttf filter=lfs diff=lfs merge=lfs -text
 
 
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
  SimSun.ttf filter=lfs diff=lfs merge=lfs -text
37
+ assets/apple.jpeg filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,553 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <br>
2
+
3
+ <p align="center">
4
+ <img src="assets/logo.jpg" width="400"/>
5
+ <p>
6
+ <br>
7
+
8
+ <p align="center">
9
+ Qwen-VL <a href="https://modelscope.cn/models/qwen/Qwen-VL/summary">🤖 <a> | <a href="https://huggingface.co/Qwen/Qwen-VL">🤗</a>&nbsp | Qwen-VL-Chat <a href="https://modelscope.cn/models/qwen/Qwen-VL-Chat/summary">🤖 <a>| <a href="https://huggingface.co/Qwen/Qwen-VL-Chat">🤗</a>&nbsp | &nbsp<a href="https://modelscope.cn/studios/qwen/Qwen-VL-Chat-Demo/summary">Demo</a>&nbsp | &nbsp<a href="https://github.com/QwenLM/Qwen-VL/blob/main/visual_memo.md">Report</a>&nbsp&nbsp | &nbsp&nbsp<a href="https://discord.gg/9bjvspyu">Discord</a>
10
+
11
+ </p>
12
+ <br>
13
+
14
+ <p align="center">
15
+ <a href="README_CN.md">中文</a>&nbsp | &nbsp English
16
+ </p>
17
+ <br><br>
18
+
19
+ **Qwen-VL** (Qwen Large Vision Language Model) is the visual multimodal version of the large model series, Qwen (abbr. Tongyi Qianwen), proposed by Alibaba Cloud. Qwen-VL accepts image, text, and bounding box as inputs, outputs text and bounding box. The features of Qwen-VL include:
20
+ - **Strong performance**: It significantly surpasses existing open-source Large Vision Language Models (LVLM) under similar scale settings on multiple English evaluation benchmarks (including Zero-shot caption, VQA, DocVQA, and Grounding).
21
+ - **Multi-lingual LVLM support text recognization**: Qwen-VL naturally supports multi-lingual conversation, and it promotes end-to-end recognition of Chinese and English bi-lingual text in images.
22
+ - **Multi-image interleaved conversations**: This feature allows for the input and comparison of multiple images, as well as the ability to specify questions related to the images and engage in multi-image storytelling.
23
+ - **First generalist model support grounding in Chinese**: Detecting bounding boxes through open-domain language expression in both Chinese and English.
24
+ - **Fine-grained recognization and understanding**: Compared to the 224 resolution currently used by other open-source LVLM, the 448 resolution promotes fine-grained text recognition, document QA, and bounding box annotation.
25
+
26
+ We release two models of the Qwen-VL series:
27
+ - Qwen-VL: The pre-trained LVLM model uses Qwen-7B as the initialization of the LLM, and [Openclip ViT-bigG](https://github.com/mlfoundations/open_clip) as the initialization of the visual encoder. And connects them with a randomly initialized cross-attention layer. Qwen-VL was trained on about 1.5B image-text paired data. The final image input resolution is 448.
28
+ - Qwen-VL-Chat: A multimodal LLM-based AI assistant, which is trained with alignment techniques.
29
+
30
+ For more details about Qwen-VL, please refer to our [technical memo](visual_memo.md).
31
+
32
+ ## Evaluation
33
+
34
+ We evaluated the model's ability from two perspectives:
35
+ 1. **Standard Benchmarks**: We evaluate the model's basic task capabilities on four major categories of multimodal tasks:
36
+ - Zero-shot Caption: Evaluate model's zero-shot image captioning ability on unseen datasets;
37
+ - General VQA: Evaluate the general question-answering ability of pictures, such as the judgment, color, number, category, etc;
38
+ - Text-based VQA: Evaluate the model's ability to recognize text in pictures, such as document QA, chart QA, etc;
39
+ - Referring Expression Comprehension: Evaluate the ability to localize a target object in an image described by a referring expression.
40
+
41
+ 2. **TouchStone**: To evaluate the overall text-image dialogue capability and alignment level with humans, we have constructed a benchmark called TouchStone, which is based on scoring with GPT4 to evaluate the LVLM model.
42
+ - The TouchStone benchmark covers a total of 300+ images, 800+ questions, and 27 categories. Such as attribute-based Q&A, celebrity recognition, writing poetry, summarizing multiple images, product comparison, math problem solving, etc;
43
+ - In order to break the current limitation of GPT4 in terms of direct image input, TouchStone provides fine-grained image annotations by human labeling. These detailed annotations, along with the questions and the model's output, are then presented to GPT4 for scoring.
44
+ - The benchmark includes both English and Chinese versions.
45
+
46
+ The results of the evaluation are as follows:
47
+
48
+ Qwen-VL outperforms current SOTA generalist models on multiple VL tasks and has a more comprehensive coverage in terms of capability range.
49
+
50
+ <p align="center">
51
+ <img src="assets/radar.png" width="600"/>
52
+ <p>
53
+
54
+ ### Zero-shot Caption & General VQA
55
+ <table>
56
+ <thead>
57
+ <tr>
58
+ <th rowspan="2">Model type</th>
59
+ <th rowspan="2">Model</th>
60
+ <th colspan="2">Zero-shot Caption</th>
61
+ <th colspan="5">General VQA</th>
62
+ </tr>
63
+ <tr>
64
+ <th>NoCaps</th>
65
+ <th>Flickr30K</th>
66
+ <th>VQAv2<sup>dev</sup></th>
67
+ <th>OK-VQA</th>
68
+ <th>GQA</th>
69
+ <th>SciQA-Img<br>(0-shot)</th>
70
+ <th>VizWiz<br>(0-shot)</th>
71
+ </tr>
72
+ </thead>
73
+ <tbody align="center">
74
+ <tr>
75
+ <td rowspan="12">Generalist<br>Models</td>
76
+ <td>Flamingo-9B</td>
77
+ <td>-</td>
78
+ <td>61.5</td>
79
+ <td>51.8</td>
80
+ <td>44.7</td>
81
+ <td>-</td>
82
+ <td>-</td>
83
+ <td>28.8</td>
84
+ </tr>
85
+ <tr>
86
+ <td>Flamingo-80B</td>
87
+ <td>-</td>
88
+ <td>67.2</td>
89
+ <td>56.3</td>
90
+ <td>50.6</td>
91
+ <td>-</td>
92
+ <td>-</td>
93
+ <td>31.6</td>
94
+ </tr>
95
+ <tr>
96
+ <td>Unified-IO-XL</td>
97
+ <td>100.0</td>
98
+ <td>-</td>
99
+ <td>77.9</td>
100
+ <td>54.0</td>
101
+ <td>-</td>
102
+ <td>-</td>
103
+ <td>-</td>
104
+ </tr>
105
+ <tr>
106
+ <td>Kosmos-1</td>
107
+ <td>-</td>
108
+ <td>67.1</td>
109
+ <td>51.0</td>
110
+ <td>-</td>
111
+ <td>-</td>
112
+ <td>-</td>
113
+ <td>29.2</td>
114
+ </tr>
115
+ <tr>
116
+ <td>Kosmos-2</td>
117
+ <td>-</td>
118
+ <td>66.7</td>
119
+ <td>45.6</td>
120
+ <td>-</td>
121
+ <td>-</td>
122
+ <td>-</td>
123
+ <td>-</td>
124
+ </tr>
125
+ <tr>
126
+ <td>BLIP-2 (Vicuna-13B)</td>
127
+ <td>103.9</td>
128
+ <td>71.6</td>
129
+ <td>65.0</td>
130
+ <td>45.9</td>
131
+ <td>32.3</td>
132
+ <td>61.0</td>
133
+ <td>19.6</td>
134
+ </tr>
135
+ <tr>
136
+ <td>InstructBLIP (Vicuna-13B)</td>
137
+ <td><strong>121.9</strong></td>
138
+ <td>82.8</td>
139
+ <td>-</td>
140
+ <td>-</td>
141
+ <td>49.5</td>
142
+ <td>63.1</td>
143
+ <td>33.4</td>
144
+ </tr>
145
+ <tr>
146
+ <td>Shikra (Vicuna-13B)</td>
147
+ <td>-</td>
148
+ <td>73.9</td>
149
+ <td>77.36</td>
150
+ <td>47.16</td>
151
+ <td>-</td>
152
+ <td>-</td>
153
+ <td>-</td>
154
+ </tr>
155
+ <tr>
156
+ <td><strong>Qwen-VL (Qwen-7B)</strong></td>
157
+ <td>121.4</td>
158
+ <td><b>85.8</b></td>
159
+ <td><b>78.8</b></td>
160
+ <td><b>58.6</b></td>
161
+ <td><b>59.3</b></td>
162
+ <td><b>67.1</b></td>
163
+ <td><b>34.3</b></td>
164
+ </tr>
165
+ <tr>
166
+ <td>Qwen-VL (4-shot)</td>
167
+ <td>-</td>
168
+ <td>-</td>
169
+ <td>-</td>
170
+ <td>63.6</td>
171
+ <td>-</td>
172
+ <td>-</td>
173
+ <td>39.1</td>
174
+ </tr>
175
+ <tr>
176
+ <td>Qwen-VL-Chat</td>
177
+ <td>-</td>
178
+ <td>81.5</td>
179
+ <td>-</td>
180
+ <td>56.69</td>
181
+ <td>-</td>
182
+ <td>68.22</td>
183
+ <td>37.05</td>
184
+ </tr>
185
+ <tr>
186
+ <td>Qwen-VL-Chat (4-shot)</td>
187
+ <td>-</td>
188
+ <td>-</td>
189
+ <td>-</td>
190
+ <td>60.6</td>
191
+ <td>-</td>
192
+ <td>-</td>
193
+ <td>45.5</td>
194
+ </tr>
195
+ <tr>
196
+ <td>Previous SOTA<br>(Per Task Fine-tuning)</td>
197
+ <td>-</td>
198
+ <td>127.0<br>(PALI-17B)</td>
199
+ <td>84.5<br>(InstructBLIP<br>-FlanT5-XL)</td>
200
+ <td>86.1<br>(PALI-X<br>-55B)</td>
201
+ <td>66.1<br>(PALI-X<br>-55B)</td>
202
+ <td>72.1<br>(CFR)</td>
203
+ <td>92.53<br>(LLaVa+<br>GPT-4)</td>
204
+ <td>70.9<br>(PALI-X<br>-55B)</td>
205
+ </tr>
206
+ </tbody>
207
+ </table>
208
+
209
+ - For zero-shot image captioning, Qwen-VL achieves the **SOTA** on Flickr30K and competitive results on Nocaps with InstructBlip.
210
+ - For general VQA, Qwen-VL achieves the **SOTA** under the same generalist LVLM scale settings.
211
+
212
+ ### Text-based VQA (focuse on text understanding capabilities in images)
213
+
214
+ <table>
215
+ <thead>
216
+ <tr>
217
+ <th>Model type</th>
218
+ <th>Model</th>
219
+ <th>TextVQA</th>
220
+ <th>DocVQA</th>
221
+ <th>ChartQA</th>
222
+ <th>AI2D</th>
223
+ <th>OCR-VQA</th>
224
+ </tr>
225
+ </thead>
226
+ <tbody align="center">
227
+ <tr>
228
+ <td rowspan="5">Generalist Models</td>
229
+ <td>BLIP-2 (Vicuna-13B)</td>
230
+ <td>42.4</td>
231
+ <td>-</td>
232
+ <td>-</td>
233
+ <td>-</td>
234
+ <td>-</td>
235
+ </tr>
236
+ <tr>
237
+ <td>InstructBLIP (Vicuna-13B)</td>
238
+ <td>50.7</td>
239
+ <td>-</td>
240
+ <td>-</td>
241
+ <td>-</td>
242
+ <td>-</td>
243
+ </tr>
244
+ <tr>
245
+ <td>mPLUG-DocOwl (LLaMA-7B)</td>
246
+ <td>52.6</td>
247
+ <td>62.2</td>
248
+ <td>57.4</td>
249
+ <td>-</td>
250
+ <td>-</td>
251
+ </tr>
252
+ <tr>
253
+ <td>Pic2Struct-Large (1.3B)</td>
254
+ <td>-</td>
255
+ <td><b>76.6</b></td>
256
+ <td>58.6</td>
257
+ <td>42.1</td>
258
+ <td>71.3</td>
259
+ </tr>
260
+ <tr>
261
+ <td>Qwen-VL (Qwen-7B)</td>
262
+ <td><b>63.8</b></td>
263
+ <td>65.1</td>
264
+ <td><b>65.7</b></td>
265
+ <td><b>62.3</b></td>
266
+ <td><b>75.7</b></td>
267
+ </tr>
268
+ <tr>
269
+ <td>Specialist SOTAs<br>(Specialist/Finetuned)</td>
270
+ <td>PALI-X-55B (Single-task FT)<br>(Without OCR Pipeline)</td>
271
+ <td>71.44</td>
272
+ <td>80.0</td>
273
+ <td>70.0</td>
274
+ <td>81.2</td>
275
+ <td>75.0</td>
276
+ </tr>
277
+ </tbody>
278
+ </table>
279
+
280
+ - In text-related recognition/QA evaluation, Qwen-VL achieves the SOTA under the generalist LVLM scale settings.
281
+ - Resolution is important for several above evaluations. While most open-source LVLM models with 224 resolution are incapable of these evaluations or can only solve these by cutting images, Qwen-VL scales the resolution to 448 so that it can be evaluated end-to-end. Qwen-VL even outperforms Pic2Struct-Large models of 1024 resolution on some tasks.
282
+
283
+ ### Referring Expression Comprehension
284
+ <table>
285
+ <thead>
286
+ <tr>
287
+ <th rowspan="2">Model type</th>
288
+ <th rowspan="2">Model</th>
289
+ <th colspan="3">RefCOCO</th>
290
+ <th colspan="3">RefCOCO+</th>
291
+ <th colspan="2">RefCOCOg</th>
292
+ <th>GRIT</th>
293
+ </tr>
294
+ <tr>
295
+ <th>val</th>
296
+ <th>test-A</th>
297
+ <th>test-B</th>
298
+ <th>val</th>
299
+ <th>test-A</th>
300
+ <th>test-B</th>
301
+ <th>val-u</th>
302
+ <th>test-u</th>
303
+ <th>refexp</th>
304
+ </tr>
305
+ </thead>
306
+ <tbody align="center">
307
+ <tr>
308
+ <td rowspan="8">Generalist Models</td>
309
+ <td>GPV-2</td>
310
+ <td>-</td>
311
+ <td>-</td>
312
+ <td>-</td>
313
+ <td>-</td>
314
+ <td>-</td>
315
+ <td>-</td>
316
+ <td>-</td>
317
+ <td>-</td>
318
+ <td>51.50</td>
319
+ </tr>
320
+ <tr>
321
+ <td>OFA-L*</td>
322
+ <td>79.96</td>
323
+ <td>83.67</td>
324
+ <td>76.39</td>
325
+ <td>68.29</td>
326
+ <td>76.00</td>
327
+ <td>61.75</td>
328
+ <td>67.57</td>
329
+ <td>67.58</td>
330
+ <td>61.70</td>
331
+ </tr>
332
+ <tr>
333
+ <td>Unified-IO</td>
334
+ <td>-</td>
335
+ <td>-</td>
336
+ <td>-</td>
337
+ <td>-</td>
338
+ <td>-</td>
339
+ <td>-</td>
340
+ <td>-</td>
341
+ <td>-</td>
342
+ <td><b>78.61</b></td>
343
+ </tr>
344
+ <tr>
345
+ <td>VisionLLM-H</td>
346
+ <td></td>
347
+ <td>86.70</td>
348
+ <td>-</td>
349
+ <td>-</td>
350
+ <td>-</td>
351
+ <td>-</td>
352
+ <td>-</td>
353
+ <td>-</td>
354
+ <td>-</td>
355
+ </tr>
356
+ <tr>
357
+ <td>Shikra-7B</td>
358
+ <td>87.01</td>
359
+ <td>90.61</td>
360
+ <td>80.24 </td>
361
+ <td>81.60</td>
362
+ <td>87.36</td>
363
+ <td>72.12</td>
364
+ <td>82.27</td>
365
+ <td>82.19</td>
366
+ <td>69.34</td>
367
+ </tr>
368
+ <tr>
369
+ <td>Shikra-13B</td>
370
+ <td>87.83 </td>
371
+ <td>91.11</td>
372
+ <td>81.81</td>
373
+ <td>82.89</td>
374
+ <td>87.79</td>
375
+ <td>74.41</td>
376
+ <td>82.64</td>
377
+ <td>83.16</td>
378
+ <td>69.03</td>
379
+ </tr>
380
+ <tr>
381
+ <td>Qwen-VL-7B</td>
382
+ <td><b>89.36</b></td>
383
+ <td>92.26</td>
384
+ <td><b>85.34</b></td>
385
+ <td><b>83.12</b></td>
386
+ <td>88.25</td>
387
+ <td><b>77.21</b></td>
388
+ <td><b>85.58</b></td>
389
+ <td><b>85.48</b></td>
390
+ <td>78.22</td>
391
+ </tr>
392
+ <tr>
393
+ <td>Qwen-VL-7B-Chat</td>
394
+ <td><b>88.55</b></td>
395
+ <td><b>92.27</b></td>
396
+ <td>84.51</td>
397
+ <td>82.82</td>
398
+ <td><b>88.59</b></td>
399
+ <td>-</td>
400
+ <td>-</td>
401
+ <td>-</td>
402
+ <td>-</td>
403
+ </tr>
404
+ <tr>
405
+ <td rowspan="3">Specialist SOTAs<br>(Specialist/Finetuned)</td>
406
+ <td>G-DINO-L</td>
407
+ <td>90.56&nbsp;&nbsp;</td>
408
+ <td>93.19</td>
409
+ <td>88.24</td>
410
+ <td>82.75</td>
411
+ <td>88.95</td>
412
+ <td>75.92</td>
413
+ <td>86.13</td>
414
+ <td>87.02</td>
415
+ <td>-</td>
416
+ </tr>
417
+ <tr>
418
+ <td>UNINEXT-H</td>
419
+ <td>92.64 </td>
420
+ <td>94.33</td>
421
+ <td>91.46</td>
422
+ <td>85.24</td>
423
+ <td>89.63</td>
424
+ <td>79.79</td>
425
+ <td>88.73</td>
426
+ <td>89.37</td>
427
+ <td>-</td>
428
+ </tr>
429
+ <tr>
430
+ <td>ONE-PEACE</td>
431
+ <td>92.58 </td>
432
+ <td>94.18</td>
433
+ <td>89.26</td>
434
+ <td>88.77</td>
435
+ <td>92.21</td>
436
+ <td>83.23</td>
437
+ <td>89.22</td>
438
+ <td>89.27</td>
439
+ <td>-</td>
440
+ </tr>
441
+ </tbody>
442
+ </table>
443
+
444
+ - Qwen-VL achieves the **SOTA** in all above referring expression comprehension benchmarks.
445
+ - Qwen-VL has not been trained on any Chinese grounding data, but it can still generalize to the Chinese Grounding tasks in a zero-shot way by training Chinese Caption data and English Grounding data.
446
+
447
+ We provide all of the above evaluation scripts for reproducing our experimental results. Please read [eval/EVALUATION.md](eval/EVALUATION.md) for more information.
448
+
449
+ ### Chat evaluation
450
+
451
+ TouchStone is a benchmark based on scoring with GPT4 to evaluate the abilities of the LVLM model on text-image dialogue and alignment levels with humans. It covers a total of 300+ images, 800+ questions, and 27 categories, such as attribute-based Q&A, celebrity recognition, writing poetry, summarizing multiple images, product comparison, math problem solving, etc. Please read [touchstone/README_CN.md](touchstone/README.md) for more information.
452
+
453
+ #### English evaluation
454
+
455
+ | Model | Score |
456
+ |---------------|-------|
457
+ | PandaGPT | 488.5 |
458
+ | MiniGPT4 | 531.7 |
459
+ | InstructBLIP | 552.4 |
460
+ | LLaMA-AdapterV2 | 590.1 |
461
+ | mPLUG-Owl | 605.4 |
462
+ | LLaVA | 602.7 |
463
+ | Qwen-VL-Chat | 645.2 |
464
+
465
+ #### Chinese evaluation
466
+
467
+ | Model | Score |
468
+ |---------------|-------|
469
+ | VisualGLM | 247.1 |
470
+ | Qwen-VL-Chat | 401.2 |
471
+
472
+ Qwen-VL-Chat has achieved the best results in both Chinese and English alignment evaluation.
473
+
474
+ ## Requirements
475
+
476
+ * python 3.8 and above
477
+ * pytorch 1.12 and above, 2.0 and above are recommended
478
+ * CUDA 11.4 and above are recommended (this is for GPU users)
479
+
480
+ ## Quickstart
481
+
482
+ Below, we provide simple examples to show how to use Qwen-VL and Qwen-VL-Chat with 🤖 ModelScope and 🤗 Transformers.
483
+
484
+ Before running the code, make sure you have setup the environment and installed the required packages. Make sure you meet the above requirements, and then install the dependent libraries.
485
+
486
+ ```bash
487
+ pip install -r requirements.txt
488
+ ```
489
+
490
+ Now you can start with ModelScope or Transformers. More usage aboue vision encoder, please refer to [FAQ](FAQ.md).
491
+
492
+ #### 🤗 Transformers
493
+
494
+ To use Qwen-VL-Chat for the inference, all you need to do is to input a few lines of codes as demonstrated below. However, **please make sure that you are using the latest code.**
495
+
496
+ ```python
497
+ from transformers import AutoModelForCausalLM, AutoTokenizer
498
+ from transformers.generation import GenerationConfig
499
+ import torch
500
+ torch.manual_seed(1234)
501
+
502
+ # Note: The default behavior now has injection attack prevention off.
503
+ tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen-VL-Chat", trust_remote_code=True)
504
+
505
+ # use bf16
506
+ # model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-VL-Chat", device_map="auto", trust_remote_code=True, bf16=True).eval()
507
+ # use fp16
508
+ # model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-VL-Chat", device_map="auto", trust_remote_code=True, fp16=True).eval()
509
+ # use cpu only
510
+ # model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-VL-Chat", device_map="cpu", trust_remote_code=True).eval()
511
+ # use cuda device
512
+ model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-VL-Chat", device_map="cuda", trust_remote_code=True).eval()
513
+
514
+ # Specify hyperparameters for generation
515
+ model.generation_config = GenerationConfig.from_pretrained("Qwen/Qwen-VL-Chat", trust_remote_code=True)
516
+
517
+ # 1st dialogue turn
518
+ query = tokenizer.from_list_format([
519
+ {'image': 'https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg'},
520
+ {'text': '这是什么'},
521
+ ])
522
+ response, history = model.chat(tokenizer, query=query, history=None)
523
+ print(response)
524
+ # 图中是一名年轻女子在沙滩上和她的狗玩耍,狗的品种可能是拉布拉多。她们坐在沙滩上,狗的前腿抬起来,似乎在和人类击掌。两人之间充满了信任和爱。
525
+
526
+ # 2st dialogue turn
527
+ response, history = model.chat(tokenizer, '输出"击掌"的检测框', history=history)
528
+ print(response)
529
+ # <ref>击掌</ref><box>(517,508),(589,611)</box>
530
+ image = tokenizer.draw_bbox_on_latest_picture(response, history)
531
+ if image:
532
+ image.save('1.jpg')
533
+ else:
534
+ print("no box")
535
+ ```
536
+
537
+ <p align="center">
538
+ <img src="assets/demo_highfive.jpeg" width="500"/>
539
+ <p>
540
+
541
+ ## FAQ
542
+
543
+ If you meet problems, please refer to [FAQ](FAQ.md) and the issues first to search a solution before you launch a new issue.
544
+
545
+
546
+ ## License Agreement
547
+
548
+ Researchers and developers are free to use the codes and model weights of both Qwen-7B and Qwen-7B-Chat. We also allow their commercial use. Check our license at [LICENSE](LICENSE) for more details.
549
+
550
+ ## Contact Us
551
+
552
+ If you are interested to leave a message to either our research team or product team, feel free to send an email to [email protected].
553
+
assets/.gitattributes ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ assets/demo_vl.gif filter=lfs diff=lfs merge=lfs -text
2
+ assets/qwenvl_stage1_loss.png filter=lfs diff=lfs merge=lfs -text
3
+ assets/touchstone_datasets.jpg filter=lfs diff=lfs merge=lfs -text
4
+ assets/touchstone_logo.png filter=lfs diff=lfs merge=lfs -text
5
+ assets/wanx_colorful_black.png filter=lfs diff=lfs merge=lfs -text
6
+ assets/apple.jpeg filter=lfs diff=lfs merge=lfs -text
7
+ assets/hfagent_chat_1.png filter=lfs diff=lfs merge=lfs -text
8
+ assets/hfagent_chat_2.png filter=lfs diff=lfs merge=lfs -text
9
+ assets/hfagent_run.png filter=lfs diff=lfs merge=lfs -text
assets/demo.jpeg ADDED
assets/demo_highfive.jpeg ADDED
assets/logo.jpg ADDED
assets/radar.png ADDED