DeBERTa V3 - Multi-label Emotion Classifier

This model is a fine-tuned version of microsoft/deberta-v3-base for multi-label emotion classification.

Model Details

  • Base model: DeBERTa V3
  • Task: Multi-label emotion detection
  • Architecture: DebertaV2ForSequenceClassification
  • Number of labels: 14
  • Format: safetensors

Usage

from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch

tokenizer = AutoTokenizer.from_pretrained("PuroFuro/deberta-v3-emotion-multilabel")
model = AutoModelForSequenceClassification.from_pretrained("PuroFuro/deberta-v3-emotion-multilabel")

inputs = tokenizer("I feel nervous but hopeful.", return_tensors="pt")
outputs = model(**inputs)
probs = torch.sigmoid(outputs.logits)
print(probs)
Downloads last month
1
Safetensors
Model size
184M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support