SetFit with sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 128 tokens
- Number of Classes: 2 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
1 |
|
0 |
|
Evaluation
Metrics
Label | Accuracy |
---|---|
all | 1.0 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("setfit_model_id")
# Run inference
preds = model("جب تک تم اپنا سبق")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 2 | 6.0774 | 13 |
Label | Training Sample Count |
---|---|
0 | 1016 |
1 | 1064 |
Training Hyperparameters
- batch_size: (32, 32)
- num_epochs: (2, 2)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 20
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0004 | 1 | 0.3724 | - |
0.0192 | 50 | 0.3204 | - |
0.0385 | 100 | 0.2491 | - |
0.0577 | 150 | 0.1363 | - |
0.0769 | 200 | 0.0216 | - |
0.0962 | 250 | 0.0049 | - |
0.1154 | 300 | 0.0019 | - |
0.1346 | 350 | 0.0006 | - |
0.1538 | 400 | 0.0005 | - |
0.1731 | 450 | 0.0002 | - |
0.1923 | 500 | 0.0002 | - |
0.2115 | 550 | 0.0001 | - |
0.2308 | 600 | 0.0001 | - |
0.25 | 650 | 0.0001 | - |
0.2692 | 700 | 0.0001 | - |
0.2885 | 750 | 0.0001 | - |
0.3077 | 800 | 0.0002 | - |
0.3269 | 850 | 0.0002 | - |
0.3462 | 900 | 0.0001 | - |
0.3654 | 950 | 0.0001 | - |
0.3846 | 1000 | 0.0001 | - |
0.4038 | 1050 | 0.0001 | - |
0.4231 | 1100 | 0.0001 | - |
0.4423 | 1150 | 0.0001 | - |
0.4615 | 1200 | 0.0 | - |
0.4808 | 1250 | 0.0 | - |
0.5 | 1300 | 0.0 | - |
0.5192 | 1350 | 0.0 | - |
0.5385 | 1400 | 0.0 | - |
0.5577 | 1450 | 0.0 | - |
0.5769 | 1500 | 0.0 | - |
0.5962 | 1550 | 0.0 | - |
0.6154 | 1600 | 0.0 | - |
0.6346 | 1650 | 0.0 | - |
0.6538 | 1700 | 0.0 | - |
0.6731 | 1750 | 0.0 | - |
0.6923 | 1800 | 0.0 | - |
0.7115 | 1850 | 0.0 | - |
0.7308 | 1900 | 0.0 | - |
0.75 | 1950 | 0.0 | - |
0.7692 | 2000 | 0.0 | - |
0.7885 | 2050 | 0.0 | - |
0.8077 | 2100 | 0.0 | - |
0.8269 | 2150 | 0.0 | - |
0.8462 | 2200 | 0.0 | - |
0.8654 | 2250 | 0.0 | - |
0.8846 | 2300 | 0.0 | - |
0.9038 | 2350 | 0.0 | - |
0.9231 | 2400 | 0.0 | - |
0.9423 | 2450 | 0.0 | - |
0.9615 | 2500 | 0.0 | - |
0.9808 | 2550 | 0.0 | - |
1.0 | 2600 | 0.0 | - |
1.0192 | 2650 | 0.0 | - |
1.0385 | 2700 | 0.0 | - |
1.0577 | 2750 | 0.0 | - |
1.0769 | 2800 | 0.0 | - |
1.0962 | 2850 | 0.0 | - |
1.1154 | 2900 | 0.0 | - |
1.1346 | 2950 | 0.0 | - |
1.1538 | 3000 | 0.0 | - |
1.1731 | 3050 | 0.0 | - |
1.1923 | 3100 | 0.0 | - |
1.2115 | 3150 | 0.0 | - |
1.2308 | 3200 | 0.0 | - |
1.25 | 3250 | 0.0 | - |
1.2692 | 3300 | 0.0 | - |
1.2885 | 3350 | 0.0 | - |
1.3077 | 3400 | 0.0 | - |
1.3269 | 3450 | 0.0 | - |
1.3462 | 3500 | 0.0 | - |
1.3654 | 3550 | 0.0 | - |
1.3846 | 3600 | 0.0 | - |
1.4038 | 3650 | 0.0 | - |
1.4231 | 3700 | 0.0 | - |
1.4423 | 3750 | 0.0 | - |
1.4615 | 3800 | 0.0 | - |
1.4808 | 3850 | 0.0 | - |
1.5 | 3900 | 0.0 | - |
1.5192 | 3950 | 0.0 | - |
1.5385 | 4000 | 0.0 | - |
1.5577 | 4050 | 0.0 | - |
1.5769 | 4100 | 0.0 | - |
1.5962 | 4150 | 0.0 | - |
1.6154 | 4200 | 0.0 | - |
1.6346 | 4250 | 0.0 | - |
1.6538 | 4300 | 0.0 | - |
1.6731 | 4350 | 0.0 | - |
1.6923 | 4400 | 0.0 | - |
1.7115 | 4450 | 0.0 | - |
1.7308 | 4500 | 0.0 | - |
1.75 | 4550 | 0.0 | - |
1.7692 | 4600 | 0.0 | - |
1.7885 | 4650 | 0.0 | - |
1.8077 | 4700 | 0.0 | - |
1.8269 | 4750 | 0.0 | - |
1.8462 | 4800 | 0.0 | - |
1.8654 | 4850 | 0.0 | - |
1.8846 | 4900 | 0.0 | - |
1.9038 | 4950 | 0.0 | - |
1.9231 | 5000 | 0.0 | - |
1.9423 | 5050 | 0.0 | - |
1.9615 | 5100 | 0.0 | - |
1.9808 | 5150 | 0.0 | - |
2.0 | 5200 | 0.0 | - |
Framework Versions
- Python: 3.11.13
- SetFit: 1.1.3
- Sentence Transformers: 5.1.0
- Transformers: 4.55.0
- PyTorch: 2.6.0+cu124
- Datasets: 4.0.0
- Tokenizers: 0.21.4
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
- Downloads last month
- 19
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support