SetFit with sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2

This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
1
  • 'پاکستان کا قومی پھول چنبیلی ہے۔'
  • 'نہاری لاہور کی خاص سوغات ہے۔'
  • 'وقت کسی کا انتظار نہیں کرتا۔'
0
  • 'اس خیال سے کہ'
  • 'اس نے مجھے دعوت دی'
  • 'اس نے ایک اور کوشش'

Evaluation

Metrics

Label Accuracy
all 1.0

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("setfit_model_id")
# Run inference
preds = model("جب تک تم اپنا سبق")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 2 6.0774 13
Label Training Sample Count
0 1016
1 1064

Training Hyperparameters

  • batch_size: (32, 32)
  • num_epochs: (2, 2)
  • max_steps: -1
  • sampling_strategy: oversampling
  • num_iterations: 20
  • body_learning_rate: (2e-05, 2e-05)
  • head_learning_rate: 2e-05
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • l2_weight: 0.01
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0004 1 0.3724 -
0.0192 50 0.3204 -
0.0385 100 0.2491 -
0.0577 150 0.1363 -
0.0769 200 0.0216 -
0.0962 250 0.0049 -
0.1154 300 0.0019 -
0.1346 350 0.0006 -
0.1538 400 0.0005 -
0.1731 450 0.0002 -
0.1923 500 0.0002 -
0.2115 550 0.0001 -
0.2308 600 0.0001 -
0.25 650 0.0001 -
0.2692 700 0.0001 -
0.2885 750 0.0001 -
0.3077 800 0.0002 -
0.3269 850 0.0002 -
0.3462 900 0.0001 -
0.3654 950 0.0001 -
0.3846 1000 0.0001 -
0.4038 1050 0.0001 -
0.4231 1100 0.0001 -
0.4423 1150 0.0001 -
0.4615 1200 0.0 -
0.4808 1250 0.0 -
0.5 1300 0.0 -
0.5192 1350 0.0 -
0.5385 1400 0.0 -
0.5577 1450 0.0 -
0.5769 1500 0.0 -
0.5962 1550 0.0 -
0.6154 1600 0.0 -
0.6346 1650 0.0 -
0.6538 1700 0.0 -
0.6731 1750 0.0 -
0.6923 1800 0.0 -
0.7115 1850 0.0 -
0.7308 1900 0.0 -
0.75 1950 0.0 -
0.7692 2000 0.0 -
0.7885 2050 0.0 -
0.8077 2100 0.0 -
0.8269 2150 0.0 -
0.8462 2200 0.0 -
0.8654 2250 0.0 -
0.8846 2300 0.0 -
0.9038 2350 0.0 -
0.9231 2400 0.0 -
0.9423 2450 0.0 -
0.9615 2500 0.0 -
0.9808 2550 0.0 -
1.0 2600 0.0 -
1.0192 2650 0.0 -
1.0385 2700 0.0 -
1.0577 2750 0.0 -
1.0769 2800 0.0 -
1.0962 2850 0.0 -
1.1154 2900 0.0 -
1.1346 2950 0.0 -
1.1538 3000 0.0 -
1.1731 3050 0.0 -
1.1923 3100 0.0 -
1.2115 3150 0.0 -
1.2308 3200 0.0 -
1.25 3250 0.0 -
1.2692 3300 0.0 -
1.2885 3350 0.0 -
1.3077 3400 0.0 -
1.3269 3450 0.0 -
1.3462 3500 0.0 -
1.3654 3550 0.0 -
1.3846 3600 0.0 -
1.4038 3650 0.0 -
1.4231 3700 0.0 -
1.4423 3750 0.0 -
1.4615 3800 0.0 -
1.4808 3850 0.0 -
1.5 3900 0.0 -
1.5192 3950 0.0 -
1.5385 4000 0.0 -
1.5577 4050 0.0 -
1.5769 4100 0.0 -
1.5962 4150 0.0 -
1.6154 4200 0.0 -
1.6346 4250 0.0 -
1.6538 4300 0.0 -
1.6731 4350 0.0 -
1.6923 4400 0.0 -
1.7115 4450 0.0 -
1.7308 4500 0.0 -
1.75 4550 0.0 -
1.7692 4600 0.0 -
1.7885 4650 0.0 -
1.8077 4700 0.0 -
1.8269 4750 0.0 -
1.8462 4800 0.0 -
1.8654 4850 0.0 -
1.8846 4900 0.0 -
1.9038 4950 0.0 -
1.9231 5000 0.0 -
1.9423 5050 0.0 -
1.9615 5100 0.0 -
1.9808 5150 0.0 -
2.0 5200 0.0 -

Framework Versions

  • Python: 3.11.13
  • SetFit: 1.1.3
  • Sentence Transformers: 5.1.0
  • Transformers: 4.55.0
  • PyTorch: 2.6.0+cu124
  • Datasets: 4.0.0
  • Tokenizers: 0.21.4

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
19
Safetensors
Model size
118M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for PuristanLabs1/Urdu_TurnDetection

Evaluation results