LLaDA-8B-Tools-LoRA
This repository contains a LoRA adapter for the GSAI-ML/LLaDA-8B-Instruct model, fine-tuned by Proximile LLC to enhance its tool calling capabilities. Proximile specializes in secure, on-premise AI solutions for small and medium-sized businesses.
Update Timeline
- May 14 2025 โ Initial public release. Training examples were missing the pad tokens filling out the rest of the generation window.
- May 17 2025 โ Patched training script to include correct padding; updated model weights pushed to this repository.
About LLaDA
LLaDA (Language Large Discrete Diffusion Applied) is a novel language model architecture that uses discrete diffusion for text generation. Unlike traditional autoregressive models, LLaDA generates text through an iterative denoising process, progressively replacing mask tokens with predicted tokens based on confidence scores.
Model Description
This LoRA adapter was trained to improve LLaDA's ability to handle tool calling tasks, including:
- Generating proper JSON for tool invocation
- Processing tool response data
- Providing helpful answers based on tool outputs
Training Details
- Base Model: GSAI-ML/LLaDA-8B-Instruct
- Training Method: Supervised Fine-Tuning (SFT) with LoRA
- LoRA Configuration:
- Rank (r): 128
- Alpha: 256
- Target Modules: q_proj, k_proj, v_proj, gate_proj
- Training Data: A modified subset of the ToolACE dataset.
Installation
pip install transformers peft torch bitsandbytes
Usage
To use this LoRA adapter with the base LLaDA model:
from transformers import AutoTokenizer, AutoModel
from peft import PeftModel
# Load the base model and tokenizer
base_model_name = "GSAI-ML/LLaDA-8B-Instruct"
tokenizer = AutoTokenizer.from_pretrained(base_model_name, trust_remote_code=True)
base_model = AutoModel.from_pretrained(base_model_name, trust_remote_code=True, device_map="auto")
# Load the LoRA adapter
lora_model = PeftModel.from_pretrained(base_model, "Proximile/LLaDA-8B-Tools-LoRA")
Example Chat Completion Script
Here's a complete example of using the model for chat completion with tool calling:
import torch
import json
from transformers import AutoTokenizer, AutoModel
from peft import PeftModel
# Constants
MASK_TOKEN_ID = 126336
def add_gumbel_noise(logits, temperature):
'''
The Gumbel max is a method for sampling categorical distributions.
For diffusion models, low-precision Gumbel Max affects generation quality.
'''
if temperature <= 0:
return logits
logits = logits.to(torch.float64)
noise = torch.rand_like(logits, dtype=torch.float64)
gumbel_noise = (- torch.log(noise)) ** temperature
return logits.exp() / gumbel_noise
def get_num_transfer_tokens(mask_index, steps):
'''
In the reverse process, we precompute the number of tokens to transition at each step.
'''
mask_num = mask_index.sum(dim=1, keepdim=True)
# Ensure we have at least one step
if steps == 0:
steps = 1
base = mask_num // steps
remainder = mask_num % steps
num_transfer_tokens = torch.zeros(mask_num.size(0), steps, device=mask_index.device, dtype=torch.int64) + base
for i in range(mask_num.size(0)):
if remainder[i] > 0:
num_transfer_tokens[i, :remainder[i]] += 1
return num_transfer_tokens
def generate(model, prompt, steps=128, gen_length=128, block_length=32, temperature=0.,
remasking='low_confidence', mask_id=MASK_TOKEN_ID):
'''
Generate text using LLaDA's diffusion-based generation process.
'''
device = next(model.parameters()).device
prompt = prompt.to(device)
x = torch.full((1, prompt.shape[1] + gen_length), mask_id, dtype=torch.long).to(device)
x[:, :prompt.shape[1]] = prompt.clone()
prompt_index = (x != mask_id)
assert gen_length % block_length == 0
num_blocks = gen_length // block_length
assert steps % num_blocks == 0
steps_per_block = steps // num_blocks
for num_block in range(num_blocks):
block_mask_index = (x[:, prompt.shape[1] + num_block * block_length: prompt.shape[1] + (num_block + 1) * block_length:] == mask_id)
num_transfer_tokens = get_num_transfer_tokens(block_mask_index, steps_per_block)
for i in range(steps_per_block):
mask_index = (x == mask_id)
if not mask_index.any():
break
outputs = model(x)
logits = outputs.logits
logits_with_noise = add_gumbel_noise(logits, temperature=temperature)
x0 = torch.argmax(logits_with_noise, dim=-1) # b, l
if remasking == 'low_confidence':
p = torch.nn.functional.softmax(logits.to(torch.float64), dim=-1)
x0_p = torch.squeeze(
torch.gather(p, dim=-1, index=torch.unsqueeze(x0, -1)), -1) # b, l
elif remasking == 'random':
x0_p = torch.rand((x0.shape[0], x0.shape[1]), device=x0.device)
else:
raise NotImplementedError(remasking)
x0_p[:, prompt.shape[1] + (num_block + 1) * block_length:] = -float('inf')
x0 = torch.where(mask_index, x0, x)
confidence = torch.where(mask_index, x0_p, -float('inf'))
transfer_index = torch.zeros_like(x0, dtype=torch.bool, device=x0.device)
for j in range(confidence.shape[0]):
_, select_index = torch.topk(confidence[j], k=num_transfer_tokens[j, i])
transfer_index[j, select_index] = True
x[transfer_index] = x0[transfer_index]
return x
def chat_completion(model, tokenizer, messages, temperature=0.1, gen_length=128, steps=128):
"""
Generate a chat completion with the LLaDA model using the LoRA adapter.
Args:
model: The LLaDA model with LoRA adapter
tokenizer: The tokenizer
messages: List of message dictionaries with 'role' and 'content' keys
temperature: Temperature for generation (0 for greedy)
gen_length: Maximum length of generated text
steps: Number of denoising steps
Returns:
The generated response text
"""
# Format input for the model
formatted_input = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
# Tokenize input
input_ids = tokenizer(formatted_input, return_tensors="pt")["input_ids"]
# Generate response
with torch.no_grad():
output_ids = generate(
model,
input_ids,
steps=steps,
gen_length=gen_length,
block_length=32,
temperature=temperature,
remasking='low_confidence'
)
# Decode the generated output
generated_text = tokenizer.decode(output_ids[0, input_ids.shape[1]:], skip_special_tokens=False).split("<|")[0]
return generated_text
# Example usage
if __name__ == "__main__":
# Load the base model and tokenizer
base_model_name = "GSAI-ML/LLaDA-8B-Instruct"
tokenizer = AutoTokenizer.from_pretrained(base_model_name, trust_remote_code=True)
base_model = AutoModel.from_pretrained(base_model_name, trust_remote_code=True, device_map="auto")
# Load the LoRA adapter
lora_model = PeftModel.from_pretrained(base_model, "Proximile/LLaDA-8B-Tools-LoRA")
lora_model.eval()
# Define tool calling function schema
tool_schema = [
{
"type": "function",
"function": {
"name": "get_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA"
},
"unit": {
"type": "string",
"enum": ["celsius", "fahrenheit"],
"description": "The unit of temperature"
}
},
"required": ["location", "unit"]
}
}
}
]
# Create conversation with system prompt including tool description
system_prompt = """You are a helpful assistant with tool calling capabilities. When you receive a tool call response, use the output to format an answer to the orginal user question.
If you choose to use one or more of the following tool functions, respond with a list of JSON function calls, each with the proper arguments that best answers the given prompt.
Each tool request within the list should be in the exact format {"name": function name, "parameters": {dictionary of argument names and values}}. Do not use variables. Just a list of two-key dictionaries, each starting with the function name, followed by a dictionary of parameters.
Here are the tool functions available to you:
""" + json.dumps(tool_schema, indent=4) + """
After receiving the results back from a function call, you have to formulate your response to the user. If the information needed is not found in the returned data, either attempt a new function call, or inform the user that you cannot answer based on your available knowledge. The user cannot see the function results. You have to interpret the data and provide a response based on it.
If the user request does not necessitate a function call, simply respond to the user's query directly."""
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": "What's the weather like in New York?"}
]
# Generate assistant response (expecting tool call)
assistant_response = chat_completion(lora_model, tokenizer, messages)
print(f"Assistant: {assistant_response}")
# Mock tool response
tool_response = json.dumps({
"location": "New York, NY",
"temperature": 72,
"unit": "fahrenheit",
"condition": "Partly Cloudy",
"humidity": 65,
"wind_speed": 8,
"wind_direction": "NE"
})
# Add assistant and tool responses to the conversation
messages.append({"role": "assistant", "content": assistant_response})
messages.append({"role": "ipython", "content": tool_response})
# Generate final assistant response
final_response = chat_completion(lora_model, tokenizer, messages)
print(f"Assistant (with tool data): {final_response}")
# Assistant: [{"name": "get_weather", "parameters": {"location": "New York", "unit": "fahrenheit"}}]
# Assistant (with tool data): The current weather in New York is as follows:
# - Temperature: 72ยฐF
# - Weather Condition: Partly Cloudy
# - Humidity: 65%
# - Wind Speed: 8 miles per hour
# - Wind Direction: Northeast
Limitations
- LLaDA's diffusion-based generation is different from standard LLMs and may behave differently in certain contexts
- The model may still hallucinate or generate incorrect tool call formats
- The format of the tool call must precisely match what is shown in the example (which is a modified version of the official llama 3.1 format)
Citation
If you use this model in your research, please cite the original LLaDA paper as well as this adapter:
@misc{llada-8b-tools-lora,
author = {Proximile LLC},
title = {LLaDA-8B-Tools-LoRA},
year = {2025},
publisher = {Hugging Face},
howpublished = {\url{https://huggingface.co/Proximile/LLaDA-8B-Tools-LoRA}}
}
About Proximile LLC
Proximile LLC provides secure, cost-effective, and private AI solutions tailored to small and medium-sized businesses. We specialize in:
- On-premise AI inference solutions that ensure unparalleled privacy
- Cost-effective hardware configurations including the Jetson Orin Nano Super
- Secure Local AI applications including chatbots, RAG systems, and custom AI tools
- Specialized services for compliance & governance, knowledge management, and IT automation
Visit proximile.llc to learn more about our secure, local AI solutions for your business.
License
This adapter is released under the same license as the base LLaDA model.
Model tree for Proximile/LLaDA-8B-Tools-LoRA
Base model
GSAI-ML/LLaDA-8B-Instruct