Update README.md
Browse files
README.md
CHANGED
@@ -1,72 +1,115 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
-
|
8 |
-
-
|
9 |
-
-
|
10 |
-
|
11 |
-
-
|
12 |
-
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
- [
|
53 |
-
- [
|
54 |
-
- [
|
55 |
-
- [
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
datasets:
|
3 |
+
- facebook/multilingual_librispeech
|
4 |
+
- Parlament-Parla-v1
|
5 |
+
- gttsehu/basque_parliament_1
|
6 |
+
- facebook/voxpopuli
|
7 |
+
- johnatanebonilla/coser_lv_full
|
8 |
+
- collectivat/tv3_parla
|
9 |
+
- mozilla-foundation/common_voice_16_0
|
10 |
+
language:
|
11 |
+
- es
|
12 |
+
- ca
|
13 |
+
metrics:
|
14 |
+
- wer
|
15 |
+
- cer
|
16 |
+
tags:
|
17 |
+
- automatic-speech-recognition
|
18 |
+
- speech
|
19 |
+
- multilingual
|
20 |
+
- nemo
|
21 |
+
model-index:
|
22 |
+
- name: Mohammed-Alzahrani-ai/stt_ca-es_conformer_transducer_large_fine_tuned
|
23 |
+
results:
|
24 |
+
- task:
|
25 |
+
type: automatic-speech-recognition
|
26 |
+
name: Automatic Speech Recognition
|
27 |
+
dataset:
|
28 |
+
type: automatic-speech-recognition
|
29 |
+
name: Combined (Parlament-Parla-v1, MLS, Voxpopuli, etc.)
|
30 |
+
metrics:
|
31 |
+
- name: WER (Spanish)
|
32 |
+
type: wer
|
33 |
+
value: 0.08
|
34 |
+
- name: CER (Spanish)
|
35 |
+
type: cer
|
36 |
+
value: 0.04
|
37 |
+
- name: WER (Catalan)
|
38 |
+
type: wer
|
39 |
+
value: 0.10
|
40 |
+
- name: CER (Catalan)
|
41 |
+
type: cer
|
42 |
+
value: 0.05
|
43 |
+
---
|
44 |
+
# NVIDIA Conformer-Transducer Large (ca-es)
|
45 |
+
|
46 |
+
## Table of Contents
|
47 |
+
<details>
|
48 |
+
<summary>Click to expand</summary>
|
49 |
+
|
50 |
+
- [Model Description](#model-description)
|
51 |
+
- [Intended Uses and Limitations](#intended-uses-and-limitations)
|
52 |
+
- [How to Get Started with the Model](#how-to-get-started-with-the-model)
|
53 |
+
- [Training Details](#training-details)
|
54 |
+
- [Citation](#citation)
|
55 |
+
- [Additional Information](#additional-information)
|
56 |
+
|
57 |
+
</details>
|
58 |
+
|
59 |
+
## Summary
|
60 |
+
|
61 |
+
The "stt_ca-es_conformer_transducer_large" is an acoustic model based on ["NVIDIA/stt_es_conformer_transducer_large"](https://huggingface.co/nvidia/stt_es_conformer_transducer_large/) suitable for Bilingual Catalan-Spanish Automatic Speech Recognition.
|
62 |
+
|
63 |
+
## Model Description
|
64 |
+
|
65 |
+
This model transcribes speech, and was fine-tuned on a Bilingual ca-es dataset comprising of 4000 hours. It is a "large" variant of Conformer-Transducer, with around 120 million parameters. We expaneded it is tokenizer vocab sise to be 5.5k t oinclude lowercase, uppercase, and punctuation
|
66 |
+
See the [model architecture](#model-architecture) section and [NeMo documentation](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/models.html#conformer-transducer) for complete architecture details.
|
67 |
+
|
68 |
+
## Intended Uses and Limitations
|
69 |
+
|
70 |
+
This model can be used for Automatic Speech Recognition (ASR) in Catalan and Spanish. It is intended to transcribe audio files in Catalan and Spanish to plain text with punctuation.
|
71 |
+
|
72 |
+
### Installation
|
73 |
+
|
74 |
+
To use this model, install [NVIDIA NeMo](https://github.com/NVIDIA/NeMo). We recommend you install it after you've installed the latest PyTorch version.
|
75 |
+
```
|
76 |
+
pip install nemo_toolkit['all']
|
77 |
+
```
|
78 |
+
|
79 |
+
### For Inference
|
80 |
+
To transcribe audio in Catalan or in Spanish using this model, you can follow this example:
|
81 |
+
|
82 |
+
|
83 |
+
```python
|
84 |
+
import nemo.collections.asr as nemo_asr
|
85 |
+
nemo_asr_model = nemo_asr.models.EncDecRNNTBPEModel.restore_from(model)
|
86 |
+
transcription = nemo_asr_model.transcribe([audio_path])[0].text
|
87 |
+
print(transcription)
|
88 |
+
```
|
89 |
+
|
90 |
+
## Training Details
|
91 |
+
|
92 |
+
### Training data
|
93 |
+
|
94 |
+
The model was fine-tuned on bilingual datasets in Catalan and Spanish, for a total of 4k hours. Including:
|
95 |
+
- [Parlament-Parla-v1](https://openslr.org/59/)
|
96 |
+
- [multilingual_librispeech](https://huggingface.co/datasets/facebook/multilingual_librispeech)
|
97 |
+
- [basque_parliament_1](https://huggingface.co/datasets/gttsehu/basque_parliament_1)
|
98 |
+
- [Voxpopuli](https://huggingface.co/datasets/facebook/voxpopuli) (The datasets will be made accessible shortly.)
|
99 |
+
- [Coser](https://huggingface.co/datasets/johnatanebonilla/coser)
|
100 |
+
- [tv3_parla](https://huggingface.co/datasets/collectivat/tv3_parla)
|
101 |
+
- [common_voice_16_0](https://huggingface.co/datasets/mozilla-foundation/common_voice_16_0)
|
102 |
+
|
103 |
+
### Training procedure
|
104 |
+
|
105 |
+
This model is the result of finetuning the model ["projecte-aina/stt_ca-es_conformer_transducer_large"](https://huggingface.co/projecte-aina/stt_ca-es_conformer_transducer_large)
|
106 |
+
|
107 |
+
|
108 |
+
|
109 |
+
### Results
|
110 |
+
|
111 |
+
**Spanish WER:** 0.08
|
112 |
+
**Catalan WER:** 0.10
|
113 |
+
|
114 |
+
**Spanish CER:** 0.04
|
115 |
+
**Catalan CER:** 0.05
|