Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- ASR-Adapter-Colab_v175_wer_0.90.nemo +3 -0
- README.md +72 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
ASR-Adapter-Colab_v175_wer_0.90.nemo filter=lfs diff=lfs merge=lfs -text
|
ASR-Adapter-Colab_v175_wer_0.90.nemo
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:130c28aea5fc40a12ad71bb28a055803a9df751463fc83bae8ff104767cbe99e
|
3 |
+
size 505620480
|
README.md
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# NVIDIA Conformer-Transducer Large (ca-es)
|
2 |
+
|
3 |
+
## Table of Contents
|
4 |
+
<details>
|
5 |
+
<summary>Click to expand</summary>
|
6 |
+
|
7 |
+
- [Model Description](#model-description)
|
8 |
+
- [Intended Uses and Limitations](#intended-uses-and-limitations)
|
9 |
+
- [How to Get Started with the Model](#how-to-get-started-with-the-model)
|
10 |
+
- [Training Details](#training-details)
|
11 |
+
- [Citation](#citation)
|
12 |
+
- [Additional Information](#additional-information)
|
13 |
+
|
14 |
+
</details>
|
15 |
+
|
16 |
+
## Summary
|
17 |
+
|
18 |
+
The "stt_ca-es_conformer_transducer_large" is an acoustic model based on ["NVIDIA/stt_es_conformer_transducer_large"](https://huggingface.co/nvidia/stt_es_conformer_transducer_large/) suitable for Bilingual Catalan-Spanish Automatic Speech Recognition.
|
19 |
+
|
20 |
+
## Model Description
|
21 |
+
|
22 |
+
This model transcribes speech, and was fine-tuned on a Bilingual ca-es dataset comprising of 4000 hours. It is a "large" variant of Conformer-Transducer, with around 120 million parameters. We expaneded it is tokenizer vocab sise to be 5.5k t oinclude lowercase, uppercase, and punctuation
|
23 |
+
See the [model architecture](#model-architecture) section and [NeMo documentation](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/models.html#conformer-transducer) for complete architecture details.
|
24 |
+
|
25 |
+
## Intended Uses and Limitations
|
26 |
+
|
27 |
+
This model can be used for Automatic Speech Recognition (ASR) in Catalan and Spanish. It is intended to transcribe audio files in Catalan and Spanish to plain text with punctuation.
|
28 |
+
|
29 |
+
### Installation
|
30 |
+
|
31 |
+
To use this model, install [NVIDIA NeMo](https://github.com/NVIDIA/NeMo). We recommend you install it after you've installed the latest PyTorch version.
|
32 |
+
```
|
33 |
+
pip install nemo_toolkit['all']
|
34 |
+
```
|
35 |
+
|
36 |
+
### For Inference
|
37 |
+
To transcribe audio in Catalan or in Spanish using this model, you can follow this example:
|
38 |
+
|
39 |
+
|
40 |
+
```python
|
41 |
+
import nemo.collections.asr as nemo_asr
|
42 |
+
nemo_asr_model = nemo_asr.models.EncDecRNNTBPEModel.restore_from(model)
|
43 |
+
transcription = nemo_asr_model.transcribe([audio_path])[0].text
|
44 |
+
print(transcription)
|
45 |
+
```
|
46 |
+
|
47 |
+
## Training Details
|
48 |
+
|
49 |
+
### Training data
|
50 |
+
|
51 |
+
The model was fine-tuned on bilingual datasets in Catalan and Spanish, for a total of 4k hours. Including:
|
52 |
+
- [Parlament-Parla-v1](https://openslr.org/59/)
|
53 |
+
- [multilingual_librispeech](https://huggingface.co/datasets/facebook/multilingual_librispeech)
|
54 |
+
- [basque_parliament_1](https://huggingface.co/datasets/gttsehu/basque_parliament_1)
|
55 |
+
- [Voxpopuli](https://huggingface.co/datasets/facebook/voxpopuli) (The datasets will be made accessible shortly.)
|
56 |
+
- [Coser](https://huggingface.co/datasets/johnatanebonilla/coser)
|
57 |
+
- [tv3_parla](https://huggingface.co/datasets/collectivat/tv3_parla)
|
58 |
+
- [common_voice_16_0](https://huggingface.co/datasets/mozilla-foundation/common_voice_16_0)
|
59 |
+
|
60 |
+
### Training procedure
|
61 |
+
|
62 |
+
This model is the result of finetuning the model ["projecte-aina/stt_ca-es_conformer_transducer_large"](https://huggingface.co/projecte-aina/stt_ca-es_conformer_transducer_large)
|
63 |
+
|
64 |
+
|
65 |
+
|
66 |
+
### Results
|
67 |
+
|
68 |
+
**Spanish WER:** 0.08
|
69 |
+
**Catalan WER:** 0.10
|
70 |
+
|
71 |
+
**Spanish CER:** 0.04
|
72 |
+
**Catalan CER:** 0.05
|