PingVortex's picture
Update README.md (#1)
bf5ecd1 verified
metadata
license: cc0-1.0
language:
  - en
  - fr
  - tr
tags:
  - art
  - emoji
  - brainrot
  - text-generation
pretty_name: DistilGPT2 fine-tuned on YouTube Shorts comments
size_categories:
  - 10M<n<100M
datasets:
  - PingVortex/Youtube_shorts_comments
base_model:
  - distilbert/distilgpt2
pipeline_tag: text-generation
library_name: transformers

Youtube shorts comment generator ๐Ÿง  (I couldn't come up with a more original name)

A fine-tuned DistilGPT2 model trained on 1.4M+ YouTube Shorts comments - the perfect language model for generating cursed internet humor, emoji spam, and authentic YouTube degeneracy.

Model Details ๐Ÿ”ฅ

  • Parameters: 82M (DistilGPT2 architecture)
  • Training Data: 1,475,500 YouTube Shorts comments
  • Special Skills: Emoji generation, broken English, random character generation

Usage Example ๐Ÿ

from transformers import pipeline

brainrot = pipeline('text-generation', model='PingVortex/Youtube-shorts-comment-generator')

output = brainrot("When you see a Sigma edit:", max_length=50)
print(output[0]['generated_text'])

Sample output:
"When you see a Sigma edit: ๐Ÿ˜‚๐Ÿ˜‚๐Ÿ˜‚๐Ÿ˜‚ The white one on the last pic?๐Ÿ˜‚๐Ÿ˜‚๐Ÿ˜‚๐Ÿ˜…๐Ÿ˜…๐Ÿ˜…๐Ÿ˜Š๐Ÿ˜Š๐Ÿ˜Š๐Ÿ˜…๐Ÿ˜ฎ๐Ÿ˜ฎ๐Ÿ˜…"

Training Info โš™๏ธ

  • Epochs: 1
  • Batch Size: 8
  • Hardware: Google Colab T4 GPU
  • Training Time: ~2 hours
  • Loss: 0.24

Ethical Considerations โš ๏ธ

This model may generate:

  • Extreme emoji spam (๐Ÿ”ฅ๐Ÿ’€๐Ÿคฃ)
  • Nonsensical combinations
  • Mild brain damage
  • Occasional coherent text

Use responsibly (or irresponsibly, we don't judge).

License ๐Ÿ“œ

CC0 1.0 Universal (Public Domain)
Go nuts - no restrictions

Shoutouts ๐Ÿ”Š