ModernBERT Embed base Legal Matryoshka
This is a sentence-transformers model finetuned from nomic-ai/modernbert-embed-base on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: nomic-ai/modernbert-embed-base
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- json
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: ModernBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("PhilLel/modernbert-embed-base-legal-matryoshka-2")
# Run inference
sentences = [
'No. 11-445, ECF No. 52-1; id. Ex. B at 1, No. 11-445, ECF No. 52-1. On December 8, 2009, the \nplaintiff limited the scope of this request by notifying the CIA that it could “limit [its] search for \nrequests submitted by Michael Ravnitzky to only requests submitted in 2006 and 2009” and that \nit could “limit [its] search to the last four years in which requests were received from [each]',
'Whose requests did the CIA specifically limit its search to?',
'How is the document listed in the Vaughn index?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
dim_768
- Evaluated with
InformationRetrievalEvaluator
with these parameters:{ "truncate_dim": 768 }
Metric | Value |
---|---|
cosine_accuracy@1 | 0.5703 |
cosine_accuracy@3 | 0.6244 |
cosine_accuracy@5 | 0.6924 |
cosine_accuracy@10 | 0.7743 |
cosine_precision@1 | 0.5703 |
cosine_precision@3 | 0.5456 |
cosine_precision@5 | 0.4145 |
cosine_precision@10 | 0.2402 |
cosine_recall@1 | 0.2056 |
cosine_recall@3 | 0.5335 |
cosine_recall@5 | 0.6562 |
cosine_recall@10 | 0.7582 |
cosine_ndcg@10 | 0.6719 |
cosine_mrr@10 | 0.6179 |
cosine_map@100 | 0.6567 |
Information Retrieval
- Dataset:
dim_512
- Evaluated with
InformationRetrievalEvaluator
with these parameters:{ "truncate_dim": 512 }
Metric | Value |
---|---|
cosine_accuracy@1 | 0.5564 |
cosine_accuracy@3 | 0.6198 |
cosine_accuracy@5 | 0.6971 |
cosine_accuracy@10 | 0.7573 |
cosine_precision@1 | 0.5564 |
cosine_precision@3 | 0.5358 |
cosine_precision@5 | 0.4105 |
cosine_precision@10 | 0.2369 |
cosine_recall@1 | 0.2007 |
cosine_recall@3 | 0.5263 |
cosine_recall@5 | 0.6528 |
cosine_recall@10 | 0.7465 |
cosine_ndcg@10 | 0.6616 |
cosine_mrr@10 | 0.6062 |
cosine_map@100 | 0.6465 |
Information Retrieval
- Dataset:
dim_256
- Evaluated with
InformationRetrievalEvaluator
with these parameters:{ "truncate_dim": 256 }
Metric | Value |
---|---|
cosine_accuracy@1 | 0.541 |
cosine_accuracy@3 | 0.5765 |
cosine_accuracy@5 | 0.6538 |
cosine_accuracy@10 | 0.728 |
cosine_precision@1 | 0.541 |
cosine_precision@3 | 0.5085 |
cosine_precision@5 | 0.3839 |
cosine_precision@10 | 0.2263 |
cosine_recall@1 | 0.1941 |
cosine_recall@3 | 0.4988 |
cosine_recall@5 | 0.6115 |
cosine_recall@10 | 0.7134 |
cosine_ndcg@10 | 0.6311 |
cosine_mrr@10 | 0.5806 |
cosine_map@100 | 0.6193 |
Information Retrieval
- Dataset:
dim_128
- Evaluated with
InformationRetrievalEvaluator
with these parameters:{ "truncate_dim": 128 }
Metric | Value |
---|---|
cosine_accuracy@1 | 0.4699 |
cosine_accuracy@3 | 0.5147 |
cosine_accuracy@5 | 0.5858 |
cosine_accuracy@10 | 0.6646 |
cosine_precision@1 | 0.4699 |
cosine_precision@3 | 0.4487 |
cosine_precision@5 | 0.3419 |
cosine_precision@10 | 0.2054 |
cosine_recall@1 | 0.1691 |
cosine_recall@3 | 0.4417 |
cosine_recall@5 | 0.5471 |
cosine_recall@10 | 0.6506 |
cosine_ndcg@10 | 0.5656 |
cosine_mrr@10 | 0.513 |
cosine_map@100 | 0.5535 |
Information Retrieval
- Dataset:
dim_64
- Evaluated with
InformationRetrievalEvaluator
with these parameters:{ "truncate_dim": 64 }
Metric | Value |
---|---|
cosine_accuracy@1 | 0.3679 |
cosine_accuracy@3 | 0.4019 |
cosine_accuracy@5 | 0.4776 |
cosine_accuracy@10 | 0.5564 |
cosine_precision@1 | 0.3679 |
cosine_precision@3 | 0.3498 |
cosine_precision@5 | 0.2751 |
cosine_precision@10 | 0.1711 |
cosine_recall@1 | 0.1311 |
cosine_recall@3 | 0.3422 |
cosine_recall@5 | 0.4347 |
cosine_recall@10 | 0.5415 |
cosine_ndcg@10 | 0.4577 |
cosine_mrr@10 | 0.4075 |
cosine_map@100 | 0.4494 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 5,822 training samples
- Columns:
positive
andanchor
- Approximate statistics based on the first 1000 samples:
positive anchor type string string details - min: 28 tokens
- mean: 96.98 tokens
- max: 157 tokens
- min: 8 tokens
- mean: 16.79 tokens
- max: 41 tokens
- Samples:
positive anchor After the bench conference concluded, the following exchange occurred between
the prosecutor and Mr. Zimmerman:
[PROSECUTOR:] Did you watch this video in preparation?
[MR. ZIMMERMAN:] Yes, I did.
[PROSECUTOR:] Okay. And after seeing that video[,] was that a true and
accurate depiction of the events that occurred that day?
[MR. ZIMMERMAN:] Yes.What was Mr. Zimmerman's response when asked if he watched the video in preparation?
those guidelines still left a significant amount of ambiguity about “precisely what records [were]
being requested.” Id. (internal quotation marks omitted). Notably, although the plaintiff limited
the date range and number of reports requested, the plaintiff’s request would still place an
unreasonable search burden for two primary reasons. First, the plaintiff’s guideline asking forWhat aspect of the plaintiff's request is mentioned as limited?
motion without prejudice and permit him to do the same. See Prop. of the People, Inc., 330
F. Supp. 3d at 390 (denying the parties’ motions without prejudice because the agency failed to
submit sufficient information justifying its FOIA withholdings and permitting both parties to file
renewed motions).
Thus, it is hereby ORDERED that Defendant’s Motion for Summary Judgment, ECFWhat were the parties allowed to do after their motions were denied?
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 32per_device_eval_batch_size
: 16gradient_accumulation_steps
: 16learning_rate
: 2e-05num_train_epochs
: 4lr_scheduler_type
: cosinewarmup_ratio
: 0.1bf16
: Truetf32
: Trueload_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 16eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Truelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size
: 0fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
---|---|---|---|---|---|---|---|
1.0 | 6 | - | 0.5702 | 0.5637 | 0.5165 | 0.4642 | 0.3672 |
1.7033 | 10 | 107.719 | - | - | - | - | - |
2.0 | 12 | - | 0.6308 | 0.6204 | 0.5816 | 0.5030 | 0.3945 |
3.0 | 18 | - | 0.6403 | 0.6286 | 0.5892 | 0.5124 | 0.3973 |
3.3516 | 20 | 58.188 | 0.6406 | 0.6285 | 0.5906 | 0.5135 | 0.3979 |
1.0 | 6 | - | 0.6590 | 0.6518 | 0.6151 | 0.5451 | 0.4307 |
1.7033 | 10 | 49.076 | - | - | - | - | - |
2.0 | 12 | - | 0.6696 | 0.6602 | 0.6247 | 0.5612 | 0.4497 |
3.0 | 18 | - | 0.6719 | 0.6616 | 0.6311 | 0.5656 | 0.4577 |
3.3516 | 20 | 36.707 | 0.6719 | 0.6616 | 0.6311 | 0.5656 | 0.4577 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 4.1.0
- Transformers: 4.51.3
- PyTorch: 2.7.0+cu126
- Accelerate: 1.6.0
- Datasets: 3.5.1
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 6
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for PhilLel/modernbert-embed-base-legal-matryoshka-2
Base model
answerdotai/ModernBERT-base
Finetuned
nomic-ai/modernbert-embed-base
Evaluation results
- Cosine Accuracy@1 on dim 768self-reported0.570
- Cosine Accuracy@3 on dim 768self-reported0.624
- Cosine Accuracy@5 on dim 768self-reported0.692
- Cosine Accuracy@10 on dim 768self-reported0.774
- Cosine Precision@1 on dim 768self-reported0.570
- Cosine Precision@3 on dim 768self-reported0.546
- Cosine Precision@5 on dim 768self-reported0.415
- Cosine Precision@10 on dim 768self-reported0.240
- Cosine Recall@1 on dim 768self-reported0.206
- Cosine Recall@3 on dim 768self-reported0.533