bert_bilstm_dst_crf-ner-weibo
This model is a fine-tuned version of google-bert/bert-base-chinese on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.2064
- Precision: 0.6286
- Recall: 0.7224
- F1: 0.6722
- Accuracy: 0.9691
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 100
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.4101 | 1.0 | 22 | 0.3430 | 0.0 | 0.0 | 0.0 | 0.9330 |
0.2448 | 2.0 | 44 | 0.1469 | 0.5153 | 0.4756 | 0.4947 | 0.9626 |
0.138 | 3.0 | 66 | 0.1119 | 0.5918 | 0.7044 | 0.6432 | 0.9715 |
0.0899 | 4.0 | 88 | 0.1064 | 0.5565 | 0.6967 | 0.6187 | 0.9699 |
0.0616 | 5.0 | 110 | 0.1064 | 0.5978 | 0.6915 | 0.6412 | 0.9716 |
0.0553 | 6.0 | 132 | 0.1112 | 0.6078 | 0.6812 | 0.6424 | 0.9702 |
0.0396 | 7.0 | 154 | 0.1165 | 0.6366 | 0.7249 | 0.6779 | 0.9705 |
0.0343 | 8.0 | 176 | 0.1204 | 0.6208 | 0.7069 | 0.6611 | 0.9689 |
0.0274 | 9.0 | 198 | 0.1365 | 0.6191 | 0.7481 | 0.6775 | 0.9674 |
0.0291 | 10.0 | 220 | 0.1403 | 0.6288 | 0.6838 | 0.6552 | 0.9689 |
0.0199 | 11.0 | 242 | 0.1415 | 0.6330 | 0.7095 | 0.6691 | 0.9688 |
0.0204 | 12.0 | 264 | 0.1447 | 0.5979 | 0.7224 | 0.6542 | 0.9685 |
0.0162 | 13.0 | 286 | 0.1499 | 0.5822 | 0.7378 | 0.6508 | 0.9669 |
0.0163 | 14.0 | 308 | 0.1441 | 0.6138 | 0.7069 | 0.6571 | 0.9691 |
0.0156 | 15.0 | 330 | 0.1543 | 0.6157 | 0.7044 | 0.6571 | 0.9678 |
0.0107 | 16.0 | 352 | 0.1546 | 0.5957 | 0.7121 | 0.6487 | 0.9673 |
0.0134 | 17.0 | 374 | 0.1558 | 0.5860 | 0.7095 | 0.6419 | 0.9654 |
0.0103 | 18.0 | 396 | 0.1557 | 0.6030 | 0.7147 | 0.6541 | 0.9669 |
0.0087 | 19.0 | 418 | 0.1596 | 0.6031 | 0.6915 | 0.6443 | 0.9665 |
0.0094 | 20.0 | 440 | 0.1568 | 0.6105 | 0.6889 | 0.6473 | 0.9683 |
0.0106 | 21.0 | 462 | 0.1547 | 0.6561 | 0.6915 | 0.6733 | 0.9696 |
0.0088 | 22.0 | 484 | 0.1627 | 0.6483 | 0.6967 | 0.6716 | 0.9696 |
0.0077 | 23.0 | 506 | 0.1628 | 0.6059 | 0.7429 | 0.6674 | 0.9669 |
0.0076 | 24.0 | 528 | 0.1695 | 0.6174 | 0.6761 | 0.6454 | 0.9660 |
0.0081 | 25.0 | 550 | 0.1644 | 0.6387 | 0.7044 | 0.6699 | 0.9690 |
0.0066 | 26.0 | 572 | 0.1674 | 0.6225 | 0.7121 | 0.6643 | 0.9684 |
0.0067 | 27.0 | 594 | 0.1640 | 0.6281 | 0.7121 | 0.6675 | 0.9691 |
0.0065 | 28.0 | 616 | 0.1693 | 0.6091 | 0.7249 | 0.6620 | 0.9672 |
0.0063 | 29.0 | 638 | 0.1737 | 0.6299 | 0.7044 | 0.6650 | 0.9688 |
0.0141 | 30.0 | 660 | 0.1772 | 0.6205 | 0.7147 | 0.6643 | 0.9673 |
0.0064 | 31.0 | 682 | 0.1817 | 0.6233 | 0.7275 | 0.6714 | 0.9685 |
0.0082 | 32.0 | 704 | 0.1704 | 0.6392 | 0.6967 | 0.6667 | 0.9689 |
0.0051 | 33.0 | 726 | 0.1663 | 0.6236 | 0.7069 | 0.6627 | 0.9678 |
0.0041 | 34.0 | 748 | 0.1767 | 0.6278 | 0.7198 | 0.6707 | 0.9676 |
0.0053 | 35.0 | 770 | 0.1749 | 0.6529 | 0.6915 | 0.6717 | 0.9687 |
0.0066 | 36.0 | 792 | 0.1810 | 0.6382 | 0.7121 | 0.6731 | 0.9677 |
0.0044 | 37.0 | 814 | 0.1721 | 0.6351 | 0.7069 | 0.6691 | 0.9683 |
0.0043 | 38.0 | 836 | 0.1833 | 0.6283 | 0.7301 | 0.6754 | 0.9683 |
0.0047 | 39.0 | 858 | 0.1862 | 0.6176 | 0.7224 | 0.6659 | 0.9676 |
0.0038 | 40.0 | 880 | 0.1826 | 0.6106 | 0.7095 | 0.6564 | 0.9677 |
0.0045 | 41.0 | 902 | 0.1888 | 0.6069 | 0.7224 | 0.6596 | 0.9674 |
0.004 | 42.0 | 924 | 0.1862 | 0.6180 | 0.7069 | 0.6595 | 0.9682 |
0.0054 | 43.0 | 946 | 0.1903 | 0.6 | 0.7095 | 0.6502 | 0.9674 |
0.0052 | 44.0 | 968 | 0.1838 | 0.6379 | 0.7018 | 0.6683 | 0.9680 |
0.004 | 45.0 | 990 | 0.1850 | 0.6114 | 0.7198 | 0.6612 | 0.9676 |
0.0051 | 46.0 | 1012 | 0.1830 | 0.6412 | 0.7121 | 0.6748 | 0.9683 |
0.0045 | 47.0 | 1034 | 0.1939 | 0.6134 | 0.7301 | 0.6667 | 0.9683 |
0.0039 | 48.0 | 1056 | 0.1876 | 0.6559 | 0.6812 | 0.6683 | 0.9689 |
0.0041 | 49.0 | 1078 | 0.1904 | 0.6188 | 0.7095 | 0.6611 | 0.9675 |
0.0039 | 50.0 | 1100 | 0.1848 | 0.6242 | 0.7172 | 0.6675 | 0.9681 |
0.0043 | 51.0 | 1122 | 0.1823 | 0.6288 | 0.6967 | 0.6610 | 0.9685 |
0.0041 | 52.0 | 1144 | 0.1951 | 0.6137 | 0.7147 | 0.6603 | 0.9677 |
0.004 | 53.0 | 1166 | 0.1878 | 0.6026 | 0.7095 | 0.6517 | 0.9678 |
0.0047 | 54.0 | 1188 | 0.1843 | 0.6247 | 0.6889 | 0.6553 | 0.9687 |
0.0042 | 55.0 | 1210 | 0.1947 | 0.6132 | 0.7172 | 0.6611 | 0.9685 |
0.0039 | 56.0 | 1232 | 0.1902 | 0.6330 | 0.7095 | 0.6691 | 0.9690 |
0.0038 | 57.0 | 1254 | 0.1915 | 0.6339 | 0.7121 | 0.6707 | 0.9691 |
0.0035 | 58.0 | 1276 | 0.1887 | 0.6264 | 0.7198 | 0.6699 | 0.9686 |
0.0044 | 59.0 | 1298 | 0.1907 | 0.6247 | 0.7147 | 0.6667 | 0.9686 |
0.0026 | 60.0 | 1320 | 0.1927 | 0.6362 | 0.7147 | 0.6731 | 0.9687 |
0.004 | 61.0 | 1342 | 0.1904 | 0.6374 | 0.7095 | 0.6715 | 0.9689 |
0.0041 | 62.0 | 1364 | 0.1914 | 0.6222 | 0.7198 | 0.6675 | 0.9681 |
0.0037 | 63.0 | 1386 | 0.1878 | 0.6298 | 0.7172 | 0.6707 | 0.9684 |
0.0042 | 64.0 | 1408 | 0.1934 | 0.6074 | 0.7198 | 0.6588 | 0.9674 |
0.0047 | 65.0 | 1430 | 0.1992 | 0.6092 | 0.7172 | 0.6588 | 0.9676 |
0.0042 | 66.0 | 1452 | 0.1968 | 0.6186 | 0.7172 | 0.6643 | 0.9679 |
0.0038 | 67.0 | 1474 | 0.1970 | 0.6189 | 0.7224 | 0.6667 | 0.9683 |
0.0033 | 68.0 | 1496 | 0.1976 | 0.6173 | 0.7172 | 0.6635 | 0.9680 |
0.0037 | 69.0 | 1518 | 0.1983 | 0.6247 | 0.7147 | 0.6667 | 0.9684 |
0.0037 | 70.0 | 1540 | 0.1955 | 0.6247 | 0.7147 | 0.6667 | 0.9685 |
0.0038 | 71.0 | 1562 | 0.1970 | 0.6290 | 0.7147 | 0.6691 | 0.9682 |
0.0034 | 72.0 | 1584 | 0.2001 | 0.6242 | 0.7172 | 0.6675 | 0.9681 |
0.0039 | 73.0 | 1606 | 0.2023 | 0.6293 | 0.7069 | 0.6659 | 0.9676 |
0.0027 | 74.0 | 1628 | 0.2003 | 0.6381 | 0.7069 | 0.6707 | 0.9685 |
0.0037 | 75.0 | 1650 | 0.2009 | 0.6203 | 0.7224 | 0.6675 | 0.9683 |
0.0039 | 76.0 | 1672 | 0.2017 | 0.6275 | 0.7147 | 0.6683 | 0.9687 |
0.0035 | 77.0 | 1694 | 0.2016 | 0.6166 | 0.7275 | 0.6675 | 0.9688 |
0.0034 | 78.0 | 1716 | 0.2031 | 0.6108 | 0.7301 | 0.6651 | 0.9687 |
0.0028 | 79.0 | 1738 | 0.2029 | 0.6116 | 0.7326 | 0.6667 | 0.9682 |
0.003 | 80.0 | 1760 | 0.2036 | 0.6233 | 0.7275 | 0.6714 | 0.9683 |
0.0038 | 81.0 | 1782 | 0.2063 | 0.6303 | 0.7275 | 0.6754 | 0.9676 |
0.0042 | 82.0 | 1804 | 0.2040 | 0.6378 | 0.7198 | 0.6763 | 0.9685 |
0.0035 | 83.0 | 1826 | 0.2023 | 0.6149 | 0.7224 | 0.6643 | 0.9681 |
0.0033 | 84.0 | 1848 | 0.1991 | 0.6335 | 0.7198 | 0.6739 | 0.9685 |
0.0043 | 85.0 | 1870 | 0.2013 | 0.6306 | 0.7198 | 0.6723 | 0.9686 |
0.0036 | 86.0 | 1892 | 0.1988 | 0.6364 | 0.7018 | 0.6675 | 0.9694 |
0.0037 | 87.0 | 1914 | 0.2041 | 0.6217 | 0.7224 | 0.6683 | 0.9689 |
0.0031 | 88.0 | 1936 | 0.2043 | 0.6231 | 0.7224 | 0.6690 | 0.9689 |
0.0027 | 89.0 | 1958 | 0.2041 | 0.625 | 0.7198 | 0.6691 | 0.9688 |
0.0026 | 90.0 | 1980 | 0.2053 | 0.6284 | 0.7172 | 0.6699 | 0.9691 |
0.0031 | 91.0 | 2002 | 0.2049 | 0.6306 | 0.7198 | 0.6723 | 0.9690 |
0.003 | 92.0 | 2024 | 0.2056 | 0.6315 | 0.7224 | 0.6739 | 0.9687 |
0.0028 | 93.0 | 2046 | 0.2066 | 0.6149 | 0.7224 | 0.6643 | 0.9684 |
0.0031 | 94.0 | 2068 | 0.2075 | 0.6135 | 0.7224 | 0.6635 | 0.9684 |
0.0038 | 95.0 | 2090 | 0.2070 | 0.6198 | 0.7249 | 0.6682 | 0.9685 |
0.003 | 96.0 | 2112 | 0.2063 | 0.6253 | 0.7249 | 0.6714 | 0.9689 |
0.0028 | 97.0 | 2134 | 0.2062 | 0.6275 | 0.7275 | 0.6738 | 0.9692 |
0.0031 | 98.0 | 2156 | 0.2063 | 0.6272 | 0.7224 | 0.6714 | 0.9692 |
0.0026 | 99.0 | 2178 | 0.2062 | 0.6286 | 0.7224 | 0.6722 | 0.9691 |
0.002 | 100.0 | 2200 | 0.2064 | 0.6286 | 0.7224 | 0.6722 | 0.9691 |
Framework versions
- Transformers 4.46.1
- Pytorch 2.4.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.2
- Downloads last month
- 110
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for PassbyGrocer/bert_bilstm_dst_crf-ner-weibo
Base model
google-bert/bert-base-chinese